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What is passive acoustic wildlife monitoring?
Passive acoustic monitoring, or just ‘acoustic monitoring’, involves surveying and 
monitoring wildlife and environments using sound recorders (acoustic sensors). These are 
deployed in the field, often for hours, days or weeks, recording acoustic data on a specified 
schedule. After collection, these recordings are processed to extract useful ecological data – 
such as detecting the calls of animal species of interest – which is then analysed similarly to 
other types of survey data.

Where can passive acoustic monitoring be useful for ecologists 
and conservationists?
Acoustic sensors are small, increasingly affordable and non-invasive, and can be deployed 
in the field for extended times to monitor wildlife and their acoustic surroundings. 
The data can then be used for estimation of species occupancy, abundance, population 
density and community composition, monitoring spatial and temporal trends in animal 
behaviour, and calculating acoustic proxies for metrics of biodiversity. Provided the 
challenges of data analysis are addressed carefully, this can make acoustic sensors 
valuable tools for cost-effective monitoring of species and ecosystems and their responses 
to human activities.

What is an acoustic sensor, and what range of sensor types are available?
An acoustic sensor can be any combination of sound recorder, detector, microphone and/
or hydrophone, designed to detect and record sound in the environment. Often this is an 
integrated bioacoustic recorder, designed specifically with ecological monitoring in mind. 
However, it can also be any custom combination of these components. Commercially 
available bioacoustic sensors usually record either audible range sound (e.g. birds, most 
mammals, amphibians) or ultrasound (e.g. bats, many toothed whales), and are designed 
specifically for either terrestrial or marine deployment. Find out more in Chapter 3.

How do acoustic sensors work, and what data do they collect?
Like any sound recording device, acoustic sensors use either a microphone (terrestrially) 
or hydrophone (underwater) to detect and convert incoming sound waves into an electrical 
signal, which is recorded and stored for later analysis. Acoustic data are recorded in the 
form of a time-amplitude signal, at a specified sampling rate. Signal processing methods 
(such as Fourier analysis) are then used to recover additional information such as the 
frequency (pitch) of incoming sounds. Find out more in Chapter 3.2.

What are the main types of bat detector, and how are they different?
Most bats vocalise in the ultrasonic spectrum, meaning that specialised ultrasonic bat 
detectors are required to detect and record their calls. The simplest are heterodyne 
detectors, where incoming echolocation calls are mixed with a signal produced by the 
detector to produce audible clicks, which can be used to infer species information. 
Frequency division detectors divide the frequency of the call by a predetermined factor 
(usually) 10. However these methods lose frequency or amplitude information that can 
be vital for accurate species ID. Full-spectrum detectors  record ultrasound at sufficiently 
high sampling rates to retain all the calls frequency and amplitude information, meaning 
that they are usually preferable for surveys and monitoring. These are usually more costly, 
but are becoming more affordable. Find out more in Chapter  6.

ACOUSTIC MONITORING FAQ
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How are acoustic monitoring data analysed?
Acoustic analysis is a multi-stage process. Usually frequency information is recovered 
from the raw waveform through signal processing, often using Fourier transforms, 
to produce a spectrogram. From there, the calls of animal species of interest can be 
identified and labelled manually, or with machine learning-based tools that detect and 
classify sounds automatically. Alternatively, global metrics can be calculated on the entire 
recording (the ‘soundscape’) to quantify aspects of the acoustic environment, such as 
biotic sound power and diversity. Find out more in Chapter 3.6.

Is passive acoustic monitoring suitable for my study species or system?
This depends on the biology of your study species and the characteristics of its 
environment. To be effectively surveyed using acoustics, study animals must produce 
detectable acoustic signals, and usually these must be identifiable to some useful category 
(e.g. genus, species, behaviour type). Another important consideration is the acoustic 
environment: very noisy environments (such as highly biodiverse areas, or urban 
habitats) can mask the sounds of species of interest, making monitoring individual species 
more challenging. However, in such instances acoustic sensors may still be useful for 
measuring global characteristics of the acoustic habitat (e.g. overall biotic sound levels, 
anthropogenic noise).  Find out more in Chapter 5.

What’s the difference between audible sound, ultrasound and infrasound, 
and why does it matter?
The human ear optimally detects frequencies between 20 and 20,000Hz, which are 
described as audible range sounds. Sounds above this frequency range, such as bat 
echolocation calls, are called ultrasonic, and are usually imperceptible to humans. Sounds 
below this range, such as elephant rumbles, are called infrasonic, and are also usually 
imperceptible. Understanding what frequency your study species vocalises at is important, 
since ultrasound and infrasound often require specialised detectors (such as full-spectrum 
bat detectors) to detect and record effectively. Find out more in the full guidelines. 
Find out more in Chapter 3.2.

How much do acoustic monitoring projects cost?
This depends on the size and time scale of the project. State-of-the-art acoustic sensors 
are still often costly, although prices are falling and open-source hardware options are 
increasingly becoming available. However, a major cost is the subsequent analysis of the 
data; if automated tools are not available for your study system, analysing hundreds or 
thousands of hours of sound recordings can be extremely time-consuming and labour-
intensive. Find out more in Chapter 5.

I’m thinking about using acoustic sensors for a monitoring project: what do 
I need to know before I start?
Consider several key questions before purchasing any equipment. Firstly, these relate to 
the species and study system: does the species of interest produce audible calls, and is the 
environment suitable for acoustic monitoring? Secondly, these relate to the challenges 
of analysis: will automated software tools (either existing software or bespoke tools) be 
available for processing the data after collection, and if not, how will the data be analysed? 
Without carefully planning the analysis pipeline in advance, there is a risk of collecting 
hundreds or thousands of hours of data that are costly to store and very difficult to analyse 
efficiently. Find out more in Chapter 5.
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I’ve used camera traps before, and I’m now thinking about using acoustic 
sensors: what are the important differences between them?
New acoustic sensors are similar to camera traps in many ways. However, while camera 
trapping is mostly limited to larger mammals and birds, acoustic monitoring can 
potentially detect a much broader variety of taxa, regardless of body size (e.g. birds, bats, 
insects, amphibians, marine mammals, fish). Acoustic data also involves different analysis 
issues: for example, there is often inadequate reference material for accurately identifying 
the calls and vocal behaviours of many species. Similarly, it is usually not possible to 
identify individual animals by their calls alone, making estimation of true detection rates 
and population sizes more difficult.  New methods are addressing these problems, which 
we discuss in Chapter 4.1.

I’ve collected some acoustic data, and I need to analyse it: what software 
tools should I use?
There is a broad range of proprietary and open-source software available for bioacoustic 
data analysis, which range from basic open-source audio processing tools, to species-
specific call classifiers, to entire software suites for processing, visualising and quantitative 
analysis. The correct choice will depend on your study system and previous experience 
with statistical software. Find out more in Chapter 8.

What are spectrograms, and why are they useful for audio analysis?
A spectrogram is a visual representation of a sound recording in the time-frequency domain, 
with time on the x-axis, frequency on the y-axis, and the amplitude of the signal usually 
shown as colour density. Spectrograms are calculated from audio waveforms using Fourier 
analysis or other signal processing methods that recover a signal’s frequency information. 
They are critical tools in the analysis of acoustic wildlife monitoring data, because they allow 
specific sounds (e.g. animal calls) to be visually recognised and labelled, either manually or 
using automated classification software. Find out more in Chapter 3.4.

Can I estimate animal abundance and population density from acoustic data?
Methods are being developed for estimation of animal density and abundance from 
acoustic data, however this is often more challenging than with other monitoring data 
types. Modelling methods must control for variation in acoustic detectability of target 
animals by species (quieter species have smaller detection distances) and by local 
environmental factors (e.g. ambient sound levels, land cover), as well as accounting for 
the non-independence of sequentially detected calls, which may come from the same 
individual. These parameters are important to consider ahead of data collection. Further 
information is provided in the full guidelines. Find out more in Chapter 4.1.

How far away from a microphone can animals be heard?
This depends on the animal species, environment and sensor type. Detection distances 
are affected by a sound’s amplitude and frequency (how rapidly it attenuates to below 
a perceptible level): in general, animals calling at higher amplitudes (more loudly) will 
be detected at greater distances than those calling at lower amplitudes (more quietly), 
and higher frequencies also attenuate more quickly than lower frequencies. Site-specific 
environmental factors also have an impact, such as the medium (air/water), temperature, 
pressure, humidity, ambient sound levels, and habitat structure such as vegetation and 
buildings. This means that different species are more readily detectable by acoustic 
sensors than others, and this can vary between habitat types. This is an important 
consideration during study planning, as it may impact the choice of sensor location, as 
well as having implications for later analysis. Find out more Chapter 7.3.1.
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What are acoustic indices, and why are they useful for audio analysis?
An acoustic index is a mathematical function calculated to describe some aspect of the 
spectral and temporal diversity or complexity of a sound recording. Indices for the study 
of biotic sound diversity, such as acoustic entropy or diversity, were originally conceived 
as analogous to traditional community ecology and biodiversity metrics. They are often 
used to quantify global spectral and temporal characteristics of sound recordings, in 
order to study their relationships to biodiversity, habitat features and global change 
(an emerging research field called ecoacoustics). They are useful because they enable 
quantitative analysis of acoustic monitoring data without the time-intensive process of 
extracting individual species calls, however they also have drawbacks such as sensitivity to 
non-biotic noise. Find out more in Chapter 4.3.
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Animals that use sound to communicate and navigate leak 
information about themselves into their environment, 
which for scientists and conservation practitioners can 
provide useful information on where species are, how big 
their populations are, and their behaviour.

Image: © Teo Lucas / Gigante Azul / WWF
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PREFACE
1.1 The aim of this guide
With biodiversity in rapid global decline, cost-effective and scalable monitoring technologies
are urgently needed to understand how global change is affecting wildlife and ecosystems.
Sound is an important component of any habitat, and sound recordings made in the field
offer potentially rich sources of ecological information about the abundance, distribution and
behaviour of vocalising animals in an area. Acoustic sensors are therefore becoming widely used
in ecology and conservation settings to monitor animal populations, behaviour, and responses
to environmental change. In recent years the burgeoning field of ecoacoustics has also begun
providing insights into acoustic community dynamics at larger scales.

With technological improvements making sophisticated off-the-shelf bioacoustic sensors
increasingly affordable, it is an exciting and fast-moving time for acoustic wildlife monitoring.
Research in this field is now addressing fundamental questions in ecology and animal behaviour,
but is also becoming increasingly useful in applied conservation settings, such as monitoring
populations of endangered or data-deficient species, or monitoring illegal activities in high-risk
areas. However, despite this rapid growth in potential uses, there remains a lack of best-practice
guidelines for researchers wishing to deploy acoustic sensors in the field to address particular
questions. This guide seeks to address this gap, by providing an introduction to acoustic
monitoring technology and its current and emerging uses in ecology and conservation, alongside
clear guidelines for acoustic sensor deployment, survey design and data analysis.

1.2	How	to	use	this	guide
This guide is written mainly with the requirements of field ecologists and conservation
practitioners in mind. It provides sufficient information to assist in selection and
deployment of acoustic sensors, and preliminary analysis of the resulting data. It does not
need to be read in order, but the information provided in the early chapters provides the
necessary conceptual background to understand the guidelines in the second half of the re-
port. A glossary of terms is provided at the back of the guide (Chapter 10).

The guide’s first half provides a broad primer on the field of acoustic wildlife monitoring,
with a brief introductory review of the history of the field (Chapter 2) followed by
a conceptual and technical background to sound recording and acoustic monitoring
technology (Chapter 3). These are followed by a review of the emerging applications of
acoustic sensors for monitoring species and populations, animal behaviour and acoustic
communities, and a discussion of the major challenges and opportunities facing the field
now and in the coming years (Chapter 4).

The second half of the guide provides best-practice information for selection of acoustic
sensors, and acoustic data collection and analysis. This includes guidance on assessing the
need for an acoustic survey (Chapter 5), criteria for choosing a suitable acoustic sensor
(Chapter 6), and a multi-part user guide for designing an acoustic monitoring study,
including sections on study design, sensor deployment and data analysis (Chapter 7).
A list of available hardware and software tools for acoustic monitoring (current at the
time of publishing) is provided in Chapter 8. Since acoustic monitoring methods are
developing rapidly, we lastly provide a concise list of recommended reading, which offers
further detail on more complex techniques and concepts that are beyond the scope of this
guide (Chapter 9).
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THE FIELD OF ACOUSTIC WILDLIFE MONITORING
HIGHLIGHTS
•	 Animals use sound for communication, echolocation, sexual display, and territorial 

defence, and bioacoustic monitoring involves the recording of those sounds to infer 
animal distribution, physiological state, abundance, and behaviour

•	 Acoustic monitoring can be used to study a broad variety of taxa as long as they emit 
detectable sounds, and to date has been applied to populations of birds, bats, marine 
mammals, amphibians, Orthoptera, elephants, and some fish

Animals use acoustic behaviour for many purposes, including communication, 
echolocation, sexual display and territorial defence, while other sounds may be produced 
accidentally e.g. through moving or feeding (Figure 1) (Bradbury & Vehrencamp 
1998). Animals that produce sound thus leak information about themselves into their 
environment, which can be used to infer whether an animal is present, and often 
information about its physiological state or behaviour (e.g. socialising, sexual behaviour, 
warning calls) (Nordeide & Kjellsby 1999; Blumstein et al. 2011; Jones et al. 2013). 

While the field of bioacoustics has historically mainly focused on animal communication 
and sensory ecology, during the last decade the use of acoustics to monitor wildlife has 
grown in tandem with new hardware and software innovations that enable the collection 
and analysis of very large acoustic datasets in field settings. Passive acoustic monitoring, 
which this guide focuses on, involves the use of acoustic sensors to record sound in 
the environment, from which ecological information is then inferred (Blumstein et al. 
2011). It is distinct from active acoustic monitoring, which we do not discuss here, which 
involves the detection of signals from sound-emitting devices (such as on-animal tags 
or sonar) (Stein 2011). Throughout this report we use the term ‘acoustic monitoring’ 
specifically in reference to passive acoustic monitoring.

Similarly to camera traps, newer acoustic sensors can be deployed in the field for extended 
periods to monitor wildlife, in order to estimate species occupancy, abundance and 
population density, to monitor animal behaviour, and to survey and monitor ecological 
communities (Laiolo 2010; Blumstein et al. 2011; Jones et al. 2013; Marques et al. 2013; 
Merchant et al. 2014). In the emerging field of ecoacoustics, biotic sound levels and 
acoustic diversity are increasingly being used as proxies for environmental condition more 
generally (Pijanowski et al. 2011b; Sueur et al. 2014; Sueur & Farina 2015). These are all 
discussed in depth in Chapter 4.

However, while camera trapping is mostly limited to larger mammals and birds, passive 
acoustic monitoring can potentially detect a much broader variety of taxa, regardless of 
body size. This remains limited to species that produce detectable sounds, and in general 
for monitoring particular animals their calls must be identifiable to a useful category (e.g. 
species, genus). Studies to date have focused on birds (e.g. (Digby et al. 2013; Sanders & 
Mennill 2014; Towsey et al. 2014; Klingbeil & Willig 2015)), bats (e.g. (Jones et al. 2013; 
Bader et al. 2015; Barlow et al. 2015)), marine mammals (e.g. (Johnson & Tyack 2003; 
Mellinger et al. 2007; Klinck et al. 2012b)), elephants (e.g. (Wrege et al. 2010; Wrege 
et al. 2017)), amphibians (especially anurans) (e.g. (Weir et al. 2009; Stevenson et al. 
2015)), Orthoptera (e.g. (Chesmore & Ohya 2004; Penone et al. 2013)) and commercially 
important fish (e.g. (Nordeide & Kjellsby 1999; Lobel 2002; Luczkovich et al. 2008)).



ACOUSTIC MONITORING  11

Time (s)

Fr
eq

ue
nc

y 
(H

z)

Figure 1: Examples of different biotic and abiotic sounds represented as spectrograms, 
with amplitude shown on a linear colour scale from blue (low) to yellow (high). Note the 
different frequency scales.

Acoustic methods have an especially rich history in the study of free-living animals that 
are both challenging to survey visually and particularly acoustically active, especially 
echolocating bats in the terrestrial realm (Russo & Jones 2003; MacSwiney G et al. 2008; 
Walters et al. 2012; Barlow et al. 2015) and cetaceans in marine environments (Johnson & 
Tyack 2003; Mellinger et al. 2011; Klinck et al. 2012b). For example, ultrasonic surveys and 
monitoring have played an important role in estimating bat species richness and population 
trends during the last two decades (e.g. (MacSwiney G et al. 2008; Barlow et al. 2015)). 
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Acoustic signals are transduced into an electrical 
signal by a microphone or hydrophone which is 
digitally recorded. Information about the signal’s 
frequency and amplitude can then be recovered and 
ecological information extracted and analysed.
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HOW ACOUSTIC SENSORS WORK: 
A PRIMER FOR ECOLOGISTS

HIGHLIGHTS
•	 Acoustic sensors used for passive acoustic monitoring generally consist of a sound 

recorder/detector and a microphone/hydrophone

•	 During electronic sound recording, sound produced by an animal propagates through 
the medium (air or water), and the signals are transduced into an electrical signal by 
a microphone or hydrophone which is then digitally recorded. Information about the 
signal’s frequency and amplitude can then be recovered and ecological information 
can be extracted and analysed

•	 Automated detection and classification of relevant sound using signal processing and 
machine learning techniques is increasingly required to extract relevant information 
from even modestly-sized datasets

Throughout this guide we use the term ‘acoustic sensor’ to refer to any combination
of sound recorder, detector, microphone and/or hydrophone, designed to detect and
record environmental sound. This could be an integrated bioacoustics sensor specifically
intended for environmental or ecological monitoring, or could consist of a custom
combination of these components. When planning a survey, it is important to understand
how acoustic sensors work and the key technical parameters that affect species detection.
This chapter provides a primer on the properties of sound and the principles of sound re-
cording (3.1-3.3), the evolution of hardware for acoustic monitoring (3.5) and principles
and tools for acoustic data analysis (3.4, 3.6). These have been written with ecologists
and conservation practitioners in mind, and are intended to provide basic information to
support the use of acoustic sensors for wildlife monitoring. A list of further reading that
provides greater detail on these concepts is provided in Chapter 9.

3.1 Sound emission and propagation
Sound is the propagation of waves of pressure through a medium, which may be gaseous
(such as air), liquid (such as water) or solid. It is produced when the vibrations of a
sound-producing object (such as the larynx of an animal or the cone of a loudspeaker),
alternately compress and rarefy the medium, creating waves of alternating high and low
pressure that propagate outward from the emitter as a sphere of increasing diameter
(Bradbury & Vehrencamp 1998). These can be understood as a wave moving through the
medium, with regions of higher pressure alternating with regions of lower pressure. A
sound wave has several key properties (Figure 2).

As sound waves propagate outward from the emitter, they attenuate, meaning that their
amplitude progressively reduces as the sound’s energy dissipates into the environment
(Russ 2013). Lower frequency sounds experience less attenuation than higher frequency
sounds, meaning that they can travel further from the emitter and still be perceived. This
has important implications for the detection of signals produced by vocalising animals,
since animals calling at higher amplitudes (i.e. more loudly) can be detected at greater
distances than those calling at lower amplitudes (i.e. more quietly). Similarly, if two
animals are vocalising at the same amplitude but at different frequencies, in general the
animal calling at a lower frequency will be detectable at greater distance than the animal
calling at a higher frequency.
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The properties of the medium also affect signal propagation. Sound waves travel 
approximately five times faster through water than air due to its higher density. Factors 
such as temperature, pressure, salinity, water depth and clutter in the environment also 
all affect the travel distances of a sound wave. These environmental factors therefore 
also have implications for monitoring wildlife through acoustics, since they affect the 
likelihood that a calling animal will be detected by a sensor (Darras et al. 2016).

Figure 2: A sinusoidal sound wave, showing characteristics of wavelength (the length of a 
complete cycle) and amplitude (proportional to energy).

>> Amplitude is proportional to the amount of energy contained within a sound wave. 
It is generally perceived by a listener as volume, with higher amplitudes perceived as 
louder sounds. While amplitude is a relative measure, it is most commonly measured in 
decibel units (dB).

>> Wavelength is the length of a complete cycle (the time between successive peaks or 
troughs of a sound wave).

>> Frequency is the number of cycles per unit time, and is measured in hertz (Hz, cycles 
per second) or kilohertz (kHz, thousands of cycles per second). It is generally perceived 
at a listener as pitch, with higher frequencies corresponding to higher pitches, and vice 
versa. The frequency of a wave is inversely proportional to its wavelength.
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3.2 Sound reception: microphones, hydrophones and 
frequency sensitivity
Sounds are produced by a sender (a vocalising animal), then propagate through a 
medium, before arriving at a receiver (Figure 3a, P17). In both animal auditory systems 
and electronic sound recording, the vibrations of a sound wave are transduced into an 
electrical signal whose amplitude is proportional to the amplitude of the sound wave. This 
typically occurs via the vibration of a membrane or other thin sheet of material. In animal 
auditory systems this is the function of the tympanic and/or basilar (cochlear – the inner 
ear) membranes, whereas in sound recording equipment this role is performed by the 
diaphragm of a microphone, or the piezoelectric transducer of a hydrophone. 

In the mammalian cochlea, sound is transduced when incoming sound causes the basilar 
membrane to vibrate; this stimulates hair cells which trigger nerve impulses. Analogously, 
the displacement of a microphone diaphragm when it is hit by a sound wave is used to 
induce an electric current, although the method used varies depending on the type of 
microphone. Hydrophones are microphones designed for use underwater and are based 
on a piezoelectric transducer, a thin sheet of material that produces an electrical current 
when a mechanical force (such as a sound wave) is applied to it. 

Different transducers are sensitive to particular frequency ranges. The human auditory 
system optimally detects frequencies between 20 and 20,000Hz, which are described as 
audible range sounds. Sounds above this frequency range, such as bat echolocation 
calls, are called ultrasonic; these are generally imperceptible to humans, and require 
specialised ultrasonic detectors to record. Sounds below this range, such as elephant 
rumbles, are called infrasonic. As with animal auditory systems, any microphone or 
hydrophone has a particular frequency sensitivity curve, and frequencies outside this 
range will be detected less optimally.

3.3 Digital sound recording
During sound recording, the transduced electrical signal must then be recorded. In older 
analogue field recorders this involved directly recording the signal onto analogue cassette 
tape. However, digital recorders are now almost universally used in bioacoustics research 
and acoustic wildlife monitoring. These provide practical advantages over analogue 
equivalents, such as much longer recording times (with digital sound files usually saved to 
SD cards) and programmable recording schedules, as well as allowing sound recordings to 
be immediately downloaded to computer for analysis.

During digital recording the amplitude of the electrical signal is sampled at a given 
sampling rate (typically measured in thousands of samples per second, kHz) and bit-
depth (the number of possible amplitude levels that can be measured, typically 16-bit), 
from which the sound wave can then be digitally reconstructed and played back (Figure 
3b, P17). Both of these parameters are important for later analysis. The bit-depth affects 
the amplitude resolution (and therefore dynamic range) of a sound recording, and the 
sampling rate affects its frequency resolution.
	
Critically, in order to fully resolve the frequency information of a sound, the sampling rate 
must be at least twice as high as the highest frequency of interest (termed the Nyquist 
frequency). The sampling rate for audible range recordings is therefore typically 
44.1kHz. However, for devices recording ultrasound, such as bat or cetacean echolocation 
calls, the sampling rate must be much higher (often between 200 and 400kHz) in order 
to retain sufficient frequency information (see Chapter 6). As a result, full spectrum 
ultrasonic recordings take up a much greater volume of storage memory.
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Figure 3: Recording and processing of an acoustic signal. An emitter produces a signal, which if within detectable range 
is picked up by a microphone or hydrophone (A; detection radius shaded in red) and transduced into an electrical signal. 
In digital recorders the signal is sampled at a specified sampling rate (kHz), enabling the sound to be reconstructed in 
the time-amplitude domain (B). A frequency spectrum can be produced using a fast Fourier transform (FFT), which 
calculates the signal’s frequency components and their relative amplitudes (C). Calculating FFT within a sliding window 
across the recording produces a spectrogram, with time shown on the x-axis, frequency on the y-axis, and with amplitude 
(energy) shown as colour intensity (blue to yellow) (D).
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3.4 Signal processing and frequency analysis
Once recorded in the time-amplitude domain (Figure 3b, P17), the signal must be 
processed in order to recover its frequency information. Most commonly this is done 
using a mathematical process called a fast Fourier transform (FFT), which converts the 
amplitude data into frequency data. For any given time window of a sound recording, 
an FFT calculates the frequency components of the signal and their relative amplitudes, 
producing a frequency spectrum (Figure 3c, P17). To visually represent an entire 
sound recording in the time-frequency domain, a Fourier transform is calculated within 
an overlapping short sliding window across the recording’s length. This produces a 
spectrogram (Figure 3d, P17), with time on the x-axis, frequency on the y-axis, and 
amplitude shown as colour intensity. 

Spectrograms are critical tools in the analysis of acoustic wildlife monitoring data, 
enabling specific sounds (e.g. animal calls) to be visually recognised and labelled, either 
manually or using automated classification software (e.g. Figure 5). However, many 
parameters selected during signal processing, such as the Fourier transform window length 
and window type, can affect the suitability for the resulting data for analysis. For example, 
one of the major challenges associated with the use of FFT spectrograms in the analysis of 
audio data is a trade-off between time resolution and frequency resolution; larger sliding 
window lengths provide improved frequency resolution but reduced time resolution, and 
vice versa (for a useful discussion of how this relates to bioacoustics analysis see (Russ 
2013)). For this reason, a variety of other signal processing approaches are also used in 
analysis of acoustic monitoring data, including cepstrum-based feature extraction (e.g. 
(Stowell & Plumbley 2014)) wavelet transforms (Walters et al. 2012) and time-domain 
waveform analysis (Jamarillo-Leforetta et al., 2016); each offers advantages and 
disadvantages. Further detail is beyond the scope of this guide, but more information can 
be found in the recommended further reading (Chapter 9).

3.5 Hardware for acoustic surveys and monitoring
Passive acoustic sensors were first utilised underwater during World War I (Sousa-Lima et 
al. 2013), and later in the 20th century US Navy acoustic sensors revealed that underwater 
environments that were previously thought to be silent were in fact very noisy (Kasumyan 
2008). Since the 1950s acoustic sensors have been used in fisheries science (Nordeide & 
Kjellsby 1999; Hawkins & Amorim 2000; Lobel 2002), but it was the development of less 
expensive and less technically complex fixed autonomous underwater acoustic recorders 
in the 1990s that significantly opened up this technology for scientific research into 
marine mammals, particularly cetaceans [e.g. 37,38]. Terrestrial audible range acoustic 
monitoring for ecological purposes mostly began later than in the marine domain, and 
early studies mainly used general-purpose field recorders and microphones rather than 
specialised bioacoustic equipment (e.g. (Riede 1993)). In many early studies, sounds 
were often recorded on analogue tape, which due to its limited storage space limited the 
potential to employ acoustic monitoring at larger scales. 

However, since the millennium, improvements in processing power and digital 
recording technology have rapidly improved the utility of acoustic sensors for ecological 
monitoring. These include reduced size, power and cost of electronic components, and 
increased battery life and memory storage capacity (via SD cards) (Obrist et al. 2010; 
Merchant et al. 2014). There have also been significant developments towards the use of 
multi-microphone arrays to spatially localise vocalising animals, improving population 
monitoring and the study of animal behaviour (Blumstein et al. 2011; Mennill et al. 2012; 
Andreassen et al. 2014; Stevenson et al. 2015).
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Figure 4: A selection of commercially available bioacoustic sensors, shown for illustrative purposes. These include 
audible range and ultrasonic sensors for both terrestrial (A: Elekon Batlogger and B: Wildlife Acoustics SM4) and 
aquatic environments (C: Chelonia Ltd. Deep C-POD and D: High Tech Inc. HTI-99-HF hydrophones).
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Acoustic methods have a longer history in bat research due to their nocturnal activity patterns 
and acoustically active lifestyles. However, since the majority of bats vocalise in the ultrasonic 
spectrum (at frequencies up to 200kHz), and are thus inaudible to humans, particular 
technical challenges are associated with detecting bat vocalisations. Early ultrasonic bat 
detectors used a method called heterodyning, whereby incoming bat echolocation calls are 
mixed with a signal produced by the detector to produce an audible click;, the species of the 
calling bat is inferred from the pattern of clicks produced by the detector (Jones et al. 2013). 
Frequency division detectors bring bat calls into audible range by dividing the frequency of the 
call by a predetermined factor (usually 10) (Jones et al. 2013). However, both heterodyne and 
frequency division significantly reduce the calls information content, making it challenging to 
distinguish many species (Walters et al. 2012; Barlow et al. 2015). Newer ultrasonic detectors 
increasingly record in full-spectrum, often by direct recording at high sampling rates (up to 
400kHz). Full-spectrum methods retain the full amplitude and frequency information of the 
call recording (Walters et al. 2012). However, currently these detectors are often very costly.

This has encouraged the development of a broad variety of commercially-available 
bioacoustics recorders, for both terrestrial and marine environments (Figure 4; see also 
Chapter 8). These are generally designed with the challenges of longer-term monitoring 
in mind. Most are weatherproof or waterproof to withstand long deployments in variable 
conditions or underwater at varying depths, most can be programmed to record on a specified 
schedule over days, weeks or months. Many also come with inbuilt sensors to jointly collect 
other relevant metadata such as GPS and temperature. Over field seasons these may collect 
hundreds of hours of acoustic recordings, from which ecological data must then be extracted. 

3.6 Analysis tools for acoustic data
Once audio data are collected, relevant ecological information must be extracted from the 
raw audio recordings. This typically consists of detecting and classifying species calls of 
interest (often with reference to a spectrogram), for which a variety of open-source and 
proprietary acoustic analysis software is available (see Chapter 8). Detection involves 
locating where sounds of interest are in a recording, and classification then involves 
assigning them to a category (e.g. species). Doing this manually is labour-intensive for 
larger datasets, and its accuracy can be biased by the analyst’s skill level (Heinicke et al. 
2015). Automated analysis tools have however rapidly improved in accuracy and efficiency 
due to innovations in signal processing and machine learning (Digby et al. 2013; Stowell 
& Plumbley 2014), leading to a fast-growing body of work on wildlife signal detection and 
classification. By facilitating automated or semi-automated analysis with standardised 
methods, this is rapidly improving the feasibility of large-scale and long-term acoustic 
surveys and monitoring (Figure 5). 

Current automated sound detection and classification tools mainly use supervised 
machine learning and related methods, including artificial neural networks (Chesmore 
& Ohya 2004; Riede et al. 2009; Walters et al. 2012), random forest (Zamora-gutierrez 
et al. 2016), Hidden Markov Models (Kirschel et al. 2009; Wimmer et al. 2010; Zilli et al. 
2014) and support vector machines (Andreassen et al. 2014; Heinicke et al. 2015). Such 
methods generally involve using a library of known species calls (e.g. bird or bat calls) to 
train algorithms to detect and classify unknown sounds in new recordings. Many such 
classification tools are now available in proprietary bioacoustics software, while others 
are freely available online (e.g. iBatsID (Walters et al. 2012), a number of classifiers in 
PAMGUARD (Gillespie et al. 2008)). 
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The classification process typically involves extracting features from a sound describing 
its spectral and temporal characteristics; these include features such as call duration, 
peak frequency and frequency range (Figure 5d). (Walters et al. 2012; Potamitis et 
al. 2014). Classification algorithms then match an unknown sound’s features to their 
closest match from a learned sound library, and usually calculate a probability that this 
match is correct (Reason et al. 2016) (Figure 5e). Feature extraction methods can be 
sensitive to factors such as recording quality and ambient noise levels (e.g. (Riede et 
al. 2009; Wimmer et al. 2010)), and currently the accuracy of automated classification 
methods is rarely high enough to enable fully-automated analysis; most studies involve 
a combination of automated processing and manual validation (e.g. (Kalan et al. 2015; 
Newson et al. 2015a)). However, a number of new methods including unsupervised 
feature extraction (Stowell & Plumbley, 2014), dynamic time warping based feature 
representations (Stathopoulous et al., 2017) and deep convolutional neural networks 
(LeCun et al., 2015, Goeau et al., 2016) can learn discriminating representations directly 
from spectrogram data, potentially improving their robustness for analysis of noisy, 
heterogeneous acoustic monitoring datasets (Figure 5e). The latter are still emerging 
as tools for the analysis of acoustic wildlife monitoring data (e.g. Mac Aodha et al., 2017, 
Goeau et al., 2016), and are likely to become much more widely used in the coming years 
as the technology continues to improve.

In all cases, developing detection and classification tools requires comprehensive 
validated call libraries of species of interest, ideally with data recorded in a range of 
ambient sound situations. Where such libraries exist they are currently generally biased 
towards temperate regions (Collen 2012; Zamora-Gutierrez et al. 2016) and vertebrates 
(Lehmann et al. 2014), and are often small in size, limiting their usefulness as training 
data for state-of-the-art deep learning methods that require large  training datasets. This 
lack of resources represents a major current gap in the field. Additionally, there is a need 
for recordings of ambient noise without species of interest present in order to identify 
major failings in automated signal detection systems, such as the misidentification 
of marine sediment transport noise as narrow-band high frequency porpoise clicks 
(Tregenza, pers. comm.). 
 
With these challenges in mind, recent work in the field of ecoacoustics has moved toward 
more global approaches to extracting ecological information from sound recordings 
(Pijanowski et al. 2011b; Sueur & Farina 2015; Harris et al. 2016). Over the last 7-8 years 
a suite of acoustic indices have been developed to summarise the acoustic characteristics 
of audio recordings (reviewed in (Sueur et al. 2014)). Research using acoustic indices 
to infer ecological trends generally assumes that the amount of biotic sound in a recording 
(calculated either as sound pressure level within a frequency band corresponding to biotic 
sound, or as some measure of acoustic complexity (Sueur et al. 2014)) is correlated with 
the diversity of vocalising animals in recording (Pijanowski et al. 2011b). However, this 
relationship is still not well understood (for more detail see Chapter 4.3).
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Figure 5: A typical automated 
analysis workflow for the detection and 
classification of wildlife sounds from an 
acoustic recording. Sound recordings are 
initially displayed in the time-amplitude 
domain (A), and a time-frequency 
spectrogram is generated, with amplitude 
shown as colour intensity (B). Signals 
are detected within the recording (C), 
and must classified to species or call type 
(e.g. echolocation and social calls) using 
a combination of feature representations 
extracted from the signal (D-E), which can 
either be hand-designed (e.g. duration; 
maximum frequency Fmax; minimum 
frequency Fmin; peak frequency Fpeak; 
frequency range Frange) or learned from 
the data structure (e.g. deep convolutional 
neural networks). Soprano pipistrelle 
photograph (c) Evgeniy Yakhontov, 
reproduced under  a CC BY-SA 3.0 license.
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Image: © Jürgen Freund / WWF

Acoustic monitoring can be used to study a broad variety of 
taxa, including birds, bats, marine mammals, amphibians, 
Orthoptera, elephants, crustaceans, and some fish
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CURRENT USES, EMERGING TRENDS AND 
LIMITATIONS OF ACOUSTIC MONITORING

HIGHLIGHTS
•	 Most current applications of acoustic monitoring endeavour to assess animal 

population dynamics, behaviour, communities and diversity, or the status of species 
or populations, often in relation to human activities

•	 Acoustic monitoring offers advantages over other survey methods, including that it is 
non-invasive, can survey a broader taxonomic range of species than camera traps, and 
uses sensors that are relatively easy to deploy and can be left in situ for extended times 

•	 Acoustic monitoring has several disadvantages too, including its inability to detect 
phenomena that do not emit sound, its dependence on relatively expensive equipment, 
and high skill level required to analyse what are often massive volumes of data 

•	 In the near future, open-source options for acoustic monitoring hardware and software, 
sensors integrated with on-board detection and classification capabilities, and networked 
sensors connected wirelessly will rapidly expand the field of acoustic monitoring

Over the last decade acoustic monitoring has emerged as an increasingly important
and widely-used tool for studying wildlife and habitats. This chapter provides a broad
background to the current state of the acoustic monitoring field, highlighting both the
current and emerging uses of acoustic sensor technology in ecology and conservation,
and also discussing the current major challenges and limitations. Its aim is to provide an
introduction to how and where acoustic sensors can be applied, and to offer a broad guide
to the current scientific literature. The current uses of acoustic monitoring are grouped
under three major themes, covering the study of species and populations (4.1), animal
behaviour (4.2), and acoustic communities and biodiversity (4.3). The limitations and
future trends in acoustic monitoring are then discussed in the context of hardware and data
collection (4.4) and data analysis (4.5). At the end of this chapter, the advantages and lim-
itations of acoustic wildlife monitoring are summarised in Table 1.

4.1 Studying species and populations
One of the key current uses of acoustic sensors in ecology is for monitoring particular
species and populations, often as a complement to other ecological survey techniques
(Figure 6). Such approaches often have the most immediate practical applications in
conservation. These include surveying and monitoring endangered or data-deficient species
(Laiolo 2010; Thompson et al. 2010; Wrege et al. 2010; Zilli et al. 2014; Borker et al.
2015; Jaramillo-Legorreta et al. 2016), monitoring indicator taxa such as bats (Jones et al.
2013; Barlow et al. 2015; Newson et al. 2015a) and insects (Penone et al. 2013; Lehmann
et al. 2014, Newson et al. 2017), providing baseline data to assess the effectiveness of
conservation interventions (Astaras et al. 2015), monitoring commercially-important
species (e.g. in fisheries, (Rountree et al. 2006)), and improving knowledge of species
ecology and distributions (Mellinger et al. 2011; Klinck et al. 2012b; Bader et al. 2015;
Newson et al. 2015a; Campos-Cerqueira & Aide 2016). Rather than detecting animal calls,
the same methods can also be used to monitor illegal activity by detecting anthropogenic
sounds in the environment, such as gunshots (e.g. (Astaras et al. 2015)), logging (e.g.
(Rainforest Connection n.d.)) or blast fishing (e.g. (Cagua et al. 2014)).
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Like camera trap data, the record of species detections collected by acoustic sensors can 
be used in species occupancy and distribution modelling in relation to environmental 
covariates. However, using acoustic data to infer animal density and abundance, and 
therefore population size, involves particular challenges. Statistical methods must ideally 
control for variation in acoustic detectability of target animals by species (quieter species 
have smaller detection distances) and by local environmental factors (e.g. ambient sound 
levels, land cover) (Darras et al. 2016), and also account for the non-independence of 
sequentially detected calls, which may come from the same individual (Marques et al. 2013; 
Lucas et al. 2015; Stevenson et al. 2015). 

Newer statistical methods that explicitly incorporate per-species estimates of detectability 
and/or call rate are providing broadly accurate estimates of population density when 
validated against other methods, for example in forest elephants (Thompson et al. 2010), 
bats (Bader et al. 2015), minke whales (Martin et al. 2013) and vaquita (Jaramillo-
Legorreta et al. 2016) (see case study 1). Generalised statistical models that explicitly 
incorporate parameters related to detectability, such as random encounter models, have 
also been developed to improve animal density estimates from static sensors (Lucas 
et al. 2015). The use of multi-microphone arrays to spatially localise calling animals 
also facilitates the use of density estimation methods such as spatially-explicit capture-
recapture (Stevenson et al. 2015).

Provided surveys are carried out over sufficient timescales, acoustic data enable 
population trends and species distributions to be estimated over multiple years (Jones et 
al. 2013; Barlow et al. 2015; Jeliazkov et al. 2016) and correlated to environmental factors 
(Penone et al. 2013; Frommolt & Tauchert 2014) (Figure 6c). However, the fast-evolving 
nature of acoustic sensor technology, and the significant challenges associated with data 
management and analysis (see 4.2), mean that there are still relatively few long-term 
acoustic wildlife monitoring programmes. Those that do exist are predominantly for bat 
monitoring, due to the relatively long history of using acoustic methods to study bats; 
these include the UK’s National Bat Monitoring Programme (Barlow et al. 2015) and the 
global Indicator Bats (iBats) program (see case study 2) (Jones et al. 2013).
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Cetacean PODs (C-PODS) are underwater passive acoustic sensors designed specifically 
for monitoring odontocetes (toothed whales). The first Porpoise Detector (POD) was 
developed in the early 1990s by Nick Tregenza in order to investigate the cause of high 
porpoise bycatch in the Celtic Sea. Using the POD it was found that the porpoises were 
frequently around the nets without getting caught and do not simply blunder into 
them and die. The success of this project lead to the development of the Timing-POD 
(T-POD), which can record the temporal sequence of clicks (click trains) by a two filter 
analogue system (Tregenza et al. 2016). The T-POD requires prior knowledge of the 
target frequencies, so the C-POD was developed which, as it is digital, is able to store click 
characteristic summaries for detection and classification (Tregenza et al. 2016). Since its 
development, the C-POD has been used to detect 26 odontocetes species. As porpoises 
and dolphins vocalise at high frequencies, at least 450 samples per second must be taken, 
leading to high data volumes and short running times. However, unlike some other 
sensors C-PODs select which sounds to record, meaning the data volumes are much lower 
– 8 GB per year as opposed to 30 TB, for example - and can therefore remain in the field 
for much longer (Trengenza, pers comm). 

In response to the increasingly rapid declines in the Vaquita marina (Phocoena sinus) 
population, endemic to the Gulf of California, Mexico, 44 C-PODs were deployed 
from 2011 to 2015 to monitor the vaquita refuge set up by the Government of Mexico 
(Jaramillo-Legorreta et al. 2016). Visual surveys had previously been used to monitor 
the population, however this method of monitoring becomes increasingly expensive 
with small populations. C-PODs were deployed in a grid of 48 points across the refuge, 
including 14 buoys around the perimeter, recording continuously for three months per 
season. Due to loss of sensors, data were collected from 46 points. In order to estimate 
vaquita density and the population trend, the number of identified clicks in 24 hours 
was used as a metric. This assumes the detection function stays constant, i.e. that there 
is no systematic change in the animal’s vocalisation. The total duration of click trains 
is more likely to be proportional to animal density than click rates as they are high in 
feeding buzzes and low during travelling, causing behaviour to be conflated with density 
or detection positive minutes, a commonly used measure of animal encounters. Trend 
analysis of these data revealed a mean annual decline of -34% per year in the vaquita 
population between 2011 and 2015 (Jaramillo-Legorreta et al. 2016). These trends are 
virtually identical to those from previous visual and acoustic surveys of the vaquita, 
indicating their validity. A 2-year gillnet ban was enforced by the Mexican Government 
following preliminary results of the acoustic surveys in 2014.

CASE STUDY 1 MONITORING THE ENDANGERED VAQUITA POPULATION 
IN THE GULF OF CALIFORNIA, MEXICO, WITH C-PODS

Cetacean PODs: 
www.chelonia.co.uk

http://www.chelonia.co.uk
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4.2 Studying animal behaviour
A key challenge of using acoustic sensors to study free-living animal behaviour is that 
individual vocalising animals are rarely identifiable from acoustic recordings alone, except 
in particular cases such as some songbirds (Kirschel et al. 2009; Petrusková et al. 2015) 
and some odontocetes (Fripp et al. 2005; Filatova et al. 2012), where individuals have 
an identifiable acoustic ‘signature’ or repertoire. However, acoustic data can still provide 
information about spatiotemporal patterns of acoustic behaviour in wild animals, and how 
these relate to the environment (Miller et al. 2013; Samarra et al. 2016). For example, 
‘hotspots’ of particular activities in particular areas can identify important habitats for 
foraging (Bader et al. 2015; Newson et al. 2015a; Davies et al. 2016) or breeding behaviour 
(Hawkins & Amorim 2000; Simpson et al. 2005; Kennedy et al. 2010), which may assist 
in the siting of protected areas (Rayment et al. 2009; Williams et al. 2015) (Figure 6d). 
Microphone arrays are also increasingly used to study communication networks in 
smaller-scale groups of free-living animals, though most studies currently involve large 
amounts of manual analysis (Blumstein et al. 2011; Petrusková et al. 2015). 

Acoustic sensor networks are also increasingly providing insights into relationships 
between human activities and animal behaviour. This includes responses to 
anthropogenic noise, an area of growing research interest due to rapid rates of 
urbanisation and industrial expansion in many regions of the world. Acoustic sensors 
have shown noise-related shifts in calling behaviour in birds (Gil et al. 2015) and forest 
elephants (Wrege et al. 2010), as well as behavioural responses to industrial and naval 
noise in cetaceans (Miller et al. 2009, 2013; DeRuiter et al. 2013). Static sensors can 
also track calling behaviour over timescales ranging from hours to years, in order to 
understand circadian and seasonal trends (e.g. (Amorim et al. 2006; Aide et al. 2013; 
Erbe et al. 2015) and estimate timings of migration e.g. (Munger et al. 2008; Sanders & 
Mennill 2014; Petrusková et al. 2015)).

Another significant trend, at the interface between acoustic wildlife monitoring and 
movement ecology, is the emergence of multi-sensor on-animal biologgers that combine 
acoustic recorders with GPS, accelerometers and other movement sensors. These devices 
record both an animal’s own acoustic behaviour and the acoustic properties of its immediate 
surroundings, as well as its position in space and other movement characteristics. This 
provides new possibilities to study individual behavioural responses to other vocalising 
animals and environmental noise field, including anthropogenic noise pollution (e.g. 
(Isojunno et al. 2016)). These tags are widely used to study marine mammal behaviour, 
including echolocation, social behaviour and responses to noise, using biologgers such 
as DTAGs (Johnson & Tyack 2003; Tyack et al. 2006). As tag sizes decrease they are also 
increasingly being deployed on terrestrial animals, including deer and large bats (Lynch et 
al. 2013; Cvikel et al. 2015), however tag weight often still prevents their ethical deployment 
on lighter and smaller-bodied animals, including many bats and birds.
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Figure 6: Current uses of acoustic sensors for species or population monitoring. Acoustic data can be collected 
across an area for a wide range of species or communities (A; black spots are sensors, and shaded areas represent 
detection radii), and target sounds are then identified within the recordings (B). These data can then be used to model 
population trends, activity patterns over various temporal and spatial scales (C) and to model spatial distributions of 
occupancy or behaviour (D).
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Since acoustic methods have been used to study bats for several decades, sensor 
technology and analysis tools are relatively more advanced for bats than many other 
taxonomic groups. Building on these innovations, Indicator Bats (iBats) was founded in 
2006 by Kate Jones (University College London, ZSL) and the Bat Conservation Trust 
(UK), to establish a global citizen science programme for monitoring bat populations 
[Jones 2013]. It is therefore a useful case study in highlighting many key challenges of 
larger-scale acoustic monitoring. Volunteers record ultrasonic surveys along car-driven 
transects, and acoustic recordings and metadata (e.g. GPS, weather) are then submitted 
to a central database for analysis [Jones 2013]. This citizen science approach facilitates 
global-scale data collection while reducing data quality biases due to variable volunteer 
skill levels. Initially focused on Eastern Europe, iBats has expanded to 22 countries 
worldwide, with volunteers collecting thousands of hours of survey data (Figure C1).

For each survey, echolocation calls from every detected bat pass must be classified to 
species (as shown in Figure 5), producing presence data that over multiple years are used 
to model population trends. Initially this was done in a semi-automated way [Jones 2013], 
however this is very time-consuming, and automated tools quickly became necessary 
to process the increasingly large iBats dataset. Many extant bat call classification tools 
are sensitive to recording noise, reducing their suitability for car transect data, and the 
limitations of proprietary software are generally inadequately reported. This challenge has 
continued to delay larger-scale iBats data analyses, although subsets have been published 
[e.g. Jones 2013, Hawkins 2016]. 

However, it has also broadened the project’s focus to encompass the development of 
new open-source software tools for acoustic bat monitoring. Drawing on innovations in 
machine learning, these have included an artificial neural network classifier, iBatsID, for 
identifying 34 European bat species calls [Walters 2012]. An online citizen science data 
annotation portal, Bat Detective, has also assisted in developing a general-use detection 
tool for locating any bat call in full-spectrum ultrasonic audio [Mac Aodha et al, in prep]. 
These new tools are currently being used to analyse the iBats dataset, and will be made 
freely available to the wider bat research community in future. This case study highlights 
that, although acoustic monitoring poses significant analytical challenges, problems 
encountered in the course of a project can often both highlight gaps in knowledge and 
encourage the development of new tools. More broadly it also emphasises the growing 
need for transparent, open-source classification tools and sound libraries to facilitate 
robust ecological research.

Figure C1: The Indicator 
Bats Programme. The map 
shows countries in which 
iBats data have been 
collected by volunteers 
carrying out car transects 
with a detector mounted 
on the roof (right). The 
spectrogram shows 
annotations on ultrasonic 
bat survey audio on the 
Bat Detective citizen 
science website.

INDICATOR BATS (IBATS) - GLOBAL ACOUSTIC 
BAT POPULATION MONITORING

CASE STUDY 2

Bat Detective 
www.batdetective.org

http://www.batdetective.org
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4.3 Studying acoustic communities
Broader community ecology metrics such as species richness and diversity indices can also 
be inferred from the diversity of vocalising animals in acoustic recordings. Acoustic surveys 
are already key tools for assessing species richness in bats due to their visually cryptic 
nature, (MacSwiney G et al. 2008; Froidevaux et al. 2014; Newson et al. 2015a). However, 
acoustic data offer an increasingly useful means to survey communities of vocalising animals 
more broadly (Celis-Murillo et al. 2009; Blumstein et al. 2011; Aide et al. 2013; Towsey 
et al. 2014). Although they can only detect acoustically active species, they offer some 
advantages over traditional surveys: recordings can be analysed with standardised methods 
post-hoc, reducing observer biases (Aide et al. 2013), and they are non-invasive and long-
term, increasing the likelihood of detecting more cryptic species (Celis-Murillo et al. 2009; 
Klingbeil & Willig 2015; Darras et al. 2016). However, a relative lack of classification tools 
and call libraries for many regions and taxa currently means that most vocalising species in 
recordings must be identified manually, making analysis very labour intensive.

As a result, much recent work has favoured whole-spectrogram approaches to quantifying 
biotic sound levels in acoustic recordings (Figure 7). This emerging field is typically referred 
to as ecoacoustics (Sueur & Farina 2015) or soundscape ecology (Pijanowski et al. 2011b; 
Krause & Farina 2016). Rather than identify individual species, such approaches typically use 
acoustic indices (see 3.1.3) to summarise the spectral and temporal characteristics of sound 
recordings, and then study their relationships to biodiversity, landscape characteristics, and 
anthropogenic change (Pijanowski et al. 2011b; Sueur et al. 2014; Sueur & Farina 2015). Some 
indices are intended to quantify relative levels of biotic and anthropogenic sound in recordings 
(Joo et al. 2011; Kasten et al. 2012), while others are specifically designed to be analogous 
to traditional community ecology metrics such as α-diversity and β-diversity (e.g. acoustic 
entropy H and dissimilarity index D (Sueur et al. 2008b)) (Figure 7b). 

Index-based analyses offer the advantage of extracting quantitative information about 
environmental sound dynamics from acoustic data while avoiding the time-consuming 
process of identifying every vocalising species. So far these methods have provided insights 
into temporal and spatial trends in biotic, abiotic and anthropogenic sound components 
(Figure 7c) (Halfwerk et al. 2011; Tucker et al. 2014; Erbe et al. 2015; Fuller et al. 2015), the 
vocalising phenology of entire acoustic communities (Farina et al. 2011; Desjonquères et 
al. 2015; Nedelec et al. 2015; Bittencourt et al. 2016), and links between acoustic diversity 
and habitat characteristics (Pekin et al. 2012; Rodriguez et al. 2014; Erbe et al. 2015; Fuller 
et al. 2015). Until recently ecoacoustics research has been conducted mainly in terrestrial 
habitats, however indices are increasingly used in aquatic monitoring, such as in coral reefs 
(McWilliam & Hawkins 2013; Lillis et al. 2014; Staaterman et al. 2014; Harris et al. 2016) 
and freshwater habitats (Desjonquères et al. 2015; Martin & Popper 2016). 

However, although acoustic indices provide biogeographical insights into soundscape 
dynamics (Lomolino et al. 2015), their usefulness in long-term ecological monitoring 
requires rigorous understanding of relationships between indices and ground-truthed 
measures of biodiversity. Acoustic index values must therefore be calibrated against 
ecological community data collected by other means (Harris et al. 2016). Currently 
these relationships are typically assessed on a per-study basis by co-collecting acoustic 
alongside other ecological survey data (e.g. (Sueur et al. 2008b; Pekin et al. 2012; Fuller 
et al. 2015)), and the general usefulness of ecoacoustics indices for monitoring different 
habitats and taxonomic groups is still not well understood (Gasc et al. 2013; Lellouch 
et al. 2014). Many indices are also sensitive to background noise, including weather 
conditions such as rain and wind and anthropogenic sounds (Farina et al. 2011), which 
may limit their applicability for biodiversity monitoring in noisier habitats on the frontiers 
of anthropogenic change, e.g. cities (Fairbrass et al. 2017). Understanding whether 
acoustic indices can be generally used to measure particular ecological characteristics 
therefore represents a major current challenge in this field.
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Figure 7: An example of soundscape 
monitoring using acoustic indices. Sensors 
are placed along a gradient of land cover (A; 
anthropogenic to primary), and soundscape 
indices are calculated from recordings (B). 
Some indices partition the soundscape 
into frequency bands corresponding to 
anthropogenic and biotic sounds (B1), 
e.g. Normalised Difference Soundscape 
Index; and others calculate the ratio of 
power between multiple frequency bands 
as a measure of acoustic diversity (B2), e.g. 
Acoustic Diversity Index. These can then be 
used to model how anthropogenic land use 
affects these indices (C).
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4.4 Limitations and emerging opportunities in hardware 
and sensor deployment
Although the costs of purpose-designed acoustic sensors have been rapidly decreasing 
in the last decade, state-of-the-art sensors are still often very costly, meaning there 
are large initial expenses associated with establishing an acoustic survey programme. 
This remains a major barrier to the broader uptake of acoustic monitoring for budget-
limited conservation programmes and citizen science. However, there are promising 
trends towards the development of low-cost, and customisable bioacoustic sensors 
(e.g. AudioMoth, see case study 3, and Solo (Whytock & Christie 2016)) and use of 
smartphones as acoustic sensors for citizen science (e.g. (Jones et al. 2013; Stevens et 
al. 2014; Zilli et al. 2014; Jepson & Ladle 2015)). Alongside their practical conservation 
applications, these developments have great potential to involve wider public in 
standardised ecological data collection, in both developing and developed regions of the 
world (Vitos et al. 2014; Zilli et al. 2014; Newson et al. 2015a). 

Currently, long-term field deployment of sensor networks involves on-going maintenance 
and regular data retrieval. There is often significant effort and cost associated with 
maintaining such a network, especially in more logistically-challenging environments 
such as marine areas or tropical forests. In the future wireless networked arrays, with data 
automatically transmitted to a central server, have potential to significantly reduce such 
costs (e.g. ARBIMON I/II (Aide et al. 2013)). Some terrestrial studies have had success in 
using networks powered by solar panels (Ellis et al. 2011; Aide et al. 2013), while in the 
marine environment ocean gliders (drones) are being developed to autonomously record 
cetaceans (Dassatti et al. 2011; Klinck et al. 2012a; Baumgartner et al. 2013). 

Similarly, as computational power increases, the quantity of data that must be stored and 
analysed can be reduced by the use of on-board detection and classification algorithms 
operating with sensors, as with ocean gliders (Dassatti et al. 2011; Baumgartner et al. 2013) 
and citizen science initiatives such as the New Forest Cicada Project (Zilli et al. 2014). These 
would also improve capacity for real-time monitoring and reporting of time-sensitive events 
such as illegal human activities (Rainforest Connection n.d.; Cagua et al. 2014; Astaras et 
al. 2015), Ultimately, the joint development of autonomous sensor networks and improved 
signal processing tools will improve the potential of acoustic sensors to be used as remote-
sensing tools, to monitor environmental change over extended time periods.

More broadly, the long-term and large-scale datasets collected by acoustic sensors 
have the potential to contribute large volumes of ecological data to global repositories 
(Villanueva-Rivera & Pijanowski 2012). Firstly, this requires increasingly robust analysis 
tools (see the next section, 4.5). However, ensuring data comparability also requires 
standardised protocols for acoustic data and metadata collection, which are not currently 
in place across the acoustic monitoring field. This is a key current topic of discussion, 
covering microphone calibration (Merchant et al. 2014), quantification of sound 
detectability across species and habitats (Darras et al. 2016), standards for appropriate 
metadata collection (including both technical specifications and environmental variables 
e.g. temperature and weather) (Roch et al. 2016), and the development of database 
platforms to facilitate data sharing (Villanueva-Rivera & Pijanowski 2012). Improving 
these standards will make acoustic data as comparable as possible across different survey 
programmes, improving its potential for use in global-scale monitoring programmes and 
ecological databases.
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4.5. Limitations and opportunities in acoustic data analysis 
Another key challenge is the development of robust and transparent automated tools 
with clearly reported methods and limitations for analysis. This is necessary both to 
lower the time costs of analysis and to standardise methods in order to reduce manual 
analysis biases (Aide et al. 2013; Heinicke et al. 2015). Improvements in automated 
signal detection and classification are proceeding quickly, and newer machine learning 
methods hold great promise for analysing even very noisy recordings (LeCun et al. 2015). 
However, currently the accuracy and transparency of such tools is still rarely high enough 
to allow fully automated analysis. Scientific research requires tools whose methods and 
limitations are clearly reported, and preferably released within an open-source framework 
to facilitate access by users across the globe. While some acoustic analysis tools are reported 
in the scientific literature (e.g. PAMGUARD (Gillespie et al. 2008), iBatsID (Walters et 
al. 2012), WarbleR (Araya-Salas & Smith-Vidaurre 2016)), many widely-used classifiers 
are incorporated within costly proprietary software, and their limitations are often not 
clearly reported. Most current acoustic monitoring studies therefore necessarily involve 
semi-automated analysis, with automatic signal detection and classification followed by 
manual checking of processed data (Wimmer et al. 2013; Andreassen et al. 2014; Heinicke 
et al. 2015; Newson et al. 2015a; Petrusková et al. 2015). Moving forward there is a need 
for robust empirical testing of multiple automated sound identification systems (both 
commercial and freeware) against expert-labelled gold-standard datasets from a variety of 
environmental situations. This would improve understanding of the sensitivity (maximising 
true positives) and specificity (minimising false positives) of different tools in different 
environments, enabling users to choose the appropriate tool for their study objectives.

There are also major taxonomic and environmental biases in the availability of such 
tools. Several exist for bats and cetaceans (e.g. C-POD.exe, PAMGUARD, SonoChiro, 
SonoBat, iBatsID, Kaleidoscope), mainly covering temperate regions although some bat 
classifiers are now available for the Neotropics. In contrast, far fewer are available for 
other taxonomic groups such as invertebrates and fish (Lehmann et al. 2014), and in 
general there is a lack of classifiers available for highly biodiverse tropical biomes (Kalan 
et al. 2015; Zamora-gutierrez et al. 2016). This is coupled with significant analytical 
challenges associated with acoustic monitoring in very biodiverse areas, such as high 
degrees of interspecific call similarity (Zamora-gutierrez et al. 2016). With many tropical 
ecosystems experiencing high rates of environmental change, this is a major limitation. 
There are also similar biases in the availability of species call libraries with which to train 
classifiers (Lehmann et al. 2014), although publicly-curated online sound libraries such 
as Xeno-Canto for birds (are potentially rich resources (e.g. (Stowell & Plumbley 2014; 
Araya-Salas & Smith-Vidaurre 2016)). 

One means of addressing this challenge would be the provision of user-friendly software 
that enable ecologists and conservation practitioners to develop project-specific tools suited 
to their own data. Currently, machine learning methods are prohibitively complex for most 
non-statistically trained researchers, so smart, interactive tools that allow users to train 
machine learning classifiers on their own datasets, and clearly report their limitations, 
would further improve the practicality of acoustic monitoring methods in ecology and 
conservation. There is currently some progress being made towards this goal, such as 
classifier training tools incorporated in the ARBIMON platform (Aide et al. 2013) , the 
open source software Tadarida (Bas et al. 2017) and the bioacoustics work of ENGAGE at 
University College London. 

Xeno-Canto: 
xeno-canto.org

ENGAGE: 
www.engage-project.org

http://xeno-canto.org
http://www.engage-project.org
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Advantages Limitations
Enable the non-invasive study of wildlife and of 
animals that are nocturnal or otherwise difficult 
to survey visually, e.g. bats, many insects, marine 
mammals.

Acoustic data enable species presence, and 
increasingly population density, to be estimated 
and correlated to environmental factors; the same 
methods also enable monitoring of illegal activities 
(e.g. logging, blast fishing).

Currently acoustic sensors only be used to 
monitor species that emit recognisable sounds.

Acoustic recorders require relatively little expert 
knowledge to use or deploy in the field, making 
them potentially ideal for use by citizen scientists or 
local conservation groups.

Purpose-designed, programmable acoustic 
sensors are often expensive, and microphones 
and electronics are vulnerable to damage from 
weather, animals and people.

Acoustic data are increasingly useful to infer 
community ecological information, such as species 
richness and diversity metrics, using either 
individual call ID or global acoustic indices (e.g. 
acoustic entropy, acoustic diversity)

Limited reference call libraries and classification 
tools mean identifying the diversity of calling 
species is often difficult, and the usefulness of 
acoustic indices for monitoring biodiversity is 
still not well understood.

Acoustic data increasingly enable inference of activity 
and behaviour patterns in free-living animals.

It is currently difficult to identify individual 
animals, except in cases where individuals have 
a recognisable acoustic signature (e.g. singing 
birds, dolphins).

Sensors can be deployed remotely and 
programmed to collect data over weeks or 
months, potentially enabling surveying of 
environments at much larger temporal and spatial 
scales than traditional ecological survey methods.

Large-scale acoustic datasets that are often 
so large that manual analysis is difficult 
to impossible, making automated tools 
important. Although many automated tools 
are currently incorporated in commercial 
software, their limitations are not always 
clearly reported.

Development of project-specific automated tools 
for detecting and classifying sounds of interest 
is mostly prohibitive for non-statistically trained 
scientists.

Table 1: Summary of the current advantages and limitations of acoustic wildlife monitoring.

Acoustic indices have great potential for monitoring of biotic sound at the temporal
and spatial scales needed for applied ecology and conservation management, such as
providing quick assessments of biodiversity in areas of rapid change, or for urban and
industrial planning. Their applicability to studies of phenology, such as seasonal patterns
of behaviour, also suggests they may in future prove useful as indicators of climate change
effects (Pavan et al. 2015; Krause & Farina 2016). However, as discussed in Chapter
4.3, current understanding of their applicability for biodiversity monitoring is ad-hoc
and tested on a per-study basis. It is often not clear what aspects of the soundscape are
being captured by acoustic indices, limiting consensus around which indices are most
appropriate for monitoring wildlife. There is a pressing need for improved understanding
of the relationships between biodiversity and global acoustic indices across environments
and species. This will involve systematic ground-truthing of indices against biodiversity
data across multiple habitats and taxonomic groups (Sueur & Farina 2015), and the
concurrent development of new analysis techniques that extract ecologically-meaningful
information from audio recordings in well-understood ways (Eldridge et al. 2016).
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The high cost of sensors is a major barrier in acoustic monitoring (see section 4), since 
it generally limits the number of sensors deployed and the capacity to involve the public in 
data collection (although the Norfolk Bat Survey, which loans static ultrasonic detectors to 
volunteers for data collection, is one example of a project working around these constraints 
[Newson 2015]). To scale up acoustic monitoring in ecology and conservation, there is a 
need for inexpensive sensors that are adaptable to a range of applications. In response to 
this  the AudioMoth, an open-source, full-spectrum acoustic/ultrasonic logger based on a 
small processor board (similar to an Arduino or Raspberry Pi), has recently been developed 
by Alex Rogers’ group at Oxford University and University of Southampton. 

The AudioMoth was first developed for the New Forest Cicada Project, an ongoing citizen 
science programme to detect the UK’s only cicada species. Initially the project focused on 
an app that enables volunteers to record and upload audio if a cicada-like sound is detected 
by their smartphone’s microphone [Zilli et al 2014]. However, it became clear that there 
was a need for additional remote loggers to expand the spatial and temporal coverage of 
monitoring. The AudioMoth logger was prototyped in 2015 and tested in the New Forest in 
2016. During deployment the devices are sealed in a plastic bag for waterproofing and zip-
tied to features in the environment, and audio is recorded to a microSD card for retrieval.

Following prototyping, the key challenges have been to make the logger’s capabilities 
as flexible as possible for a variety of possible uses; to minimise power consumption to 
facilitate long-term deployment; and to minimise component costs (the device currently 
costs under UK£40 to produce). This includes developing on-board algorithms so that the 
loggers only record audio when sounds within particular frequency bands are detected, 
preserving battery life; these features are being developed by Andrew Hill and Peter 
Prince at the University of Southampton to enable monitoring of logging and poaching in 
rainforests. The latest version is also suitable for full-spectrum ultrasonic bat surveys: its 
analogue microphone is sensitive to frequencies exceeding 100kHz, while the processor 
can record at sampling rates of 250kHz (Figure C2). These are currently being tested on 
a range of ecological use-cases, including dawn and dusk bird chorus surveys in Kenya 
and gunshot detection in Belize. The group are also exploring the potential to use them 
for large-scale citizen science biodiversity monitoring. At the time of writing, they are 
preparing the devices for open-source release: their specifications will be made available 
online in the near future, enabling users to use and adapt the hardware and firmware for 
their own applications. 

AUDIOMOTH - LOW-COST, OPEN-SOURCE 
ACOUSTIC SENSORS 

Figure C2: AudioMoth 
open-source acoustic logger 
(left) and shown deployed 
in the New Forest (right). 
The spectrogram shows 
bat echolocation calls in an 
ultrasonic recording from 
an AudioMoth.

CASE STUDY 3

AudioMoth: 
www.openacousticdevices.info

http://www.openacousticdevices.info
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Like camera traps, remote acoustic 
sensors can now be deployed in the 
field for extended periods - potentially 
for several weeks or months - and 
crucially are non-invasive, meaning 
that there is little interaction with or 
disturbance of target species. 

Image: © Paige Byerly
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IS ACOUSTIC MONITORING SUITABLE
FOR YOUR OBJECTIVES?
Conservation technologies such as acoustic sensors and camera traps are increasingly
user-friendly to deploy and maintain, and bioacoustic sensors are gradually becoming more
affordable as component costs decrease. However, most commercially-available bioacoustic
sensors remain costly, while the huge volumes of data collected by newer-generation sensors
present major data analysis challenges, even for short-term deployments (Walters et al. 2012).
It is therefore important to carefully assess in advance whether acoustic monitoring is the
most appropriate technology for your research objectives.

This chapter highlights key considerations that affect the suitability of acoustic sensors
for ecological and conservation research. These are intended as complementary to
Chapter 4, which outlines the breath of current uses and the major limitations associated
with acoustic monitoring technology.

• Can the species, sounds or environments of interest be effectively surveyed using
acoustic sensors? This includes whether animals of interest make identifiable
sounds (see Chapter 7, Table 3) and whether ambient sound levels in the habitat
may impact recordings (for example high levels of anthropogenic noise in urban or
industrial environments).

• Would other methods (e.g. traditional ecological field surveys, camera traps) be more
effective? For example, identifying individual vocalising animals via acoustics is
currently not possible for the majority of taxa, and visual surveys or camera traps may
be more effective for larger species that rarely vocalise. However, if the innovative
use of acoustic monitoring in the context can assist in answering broader technical or
methodological questions, this may justify its use over other methods.

• What environmental factors might limit the effectiveness of acoustic surveys?
Technology is vulnerable to damage from factors such as weather, humidity, theft or
wildlife damage, which may affect whether and for how long sensors can be deployed
(see Chapter 7, Table 4). High ambient noise levels in a habitat (often from human
activity) may impact recording quality. Safety issues, due to both human (e.g. conflict,
illegal activity) and wildlife activity are also priority concerns.

• How will the data be analysed? Manual analysis of large datasets is time-consuming,
costly in terms of labour and can introduce biases. Automated methods are currently
taxonomically and geographically biased, and are often error prone. It is critical to
design data analysis workflows in advance, to avoid collecting large volumes of data that
are prohibitive to analyse and expensive to store.

• Monetary budget of project. Providing comprehensive costings is beyond the scope
of this guide, however both commercial sensors and proprietary analysis software
for bioacoustics are costly. A variety of free and open-source analysis software is
available online (see Chapter 8). State-of-the-art bioacoustic sensors typically range
in price from around UK£500 to UK£2000 (for terrestrial sensors), but sensors for
marine environments are much more expensive, ranging from around UK£2000
to costs exceeding UK£5000. Budgets should also factor in costs of replacement
components (e.g. microphones, hydrophones) to replace damaged elements, and also
costs of securely storing, managing and backing-up audio databases. Further costs are
associated with the labour and logistics involved in deploying and retrieving sensors, as
well as the time involved in data analysis.
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•	 Timescale of project. Funding and resource requirements will be proportionately 
higher for long-term monitoring programmes than short-term surveys; this will 
include the costs of replacement components, sensor maintenance, and long-term 
data storage and analysis.

•	 Important additional considerations for marine acoustic monitoring: There are 
major safety issues associated with the marine realm and you should not attempt 
to deploy sensors at sea without proper training and experience. The sea can be 
very unpredictable, with extreme weather and dangerous currents. Use of boats 
to deploy acoustic sensors should only be undertaken if you have experience of 
sailing and navigating or have engaged someone with the expertise to do so for you. 
Deploying sensors from boats usually requires the use of ropes, moorings and weights.  
Inexperience of using these be extremely hazardous, as individuals may become trapped 
by the rope on deck, and can even lead to the boat tipping over, endangering the lives of 
all on board. Using acoustic releases avoids the need for surface markers, removing the 
risks to users and animals that may become entangled in the mooring lines. If deploying 
sensors by scuba diving ensure that divers have the necessary training and certifications 
for the depths, underwater environment and any equipment required (from PADI or 
other authorised training bodies).  
 
The financial cost of monitoring in the marine environment is also very high. Alongside 
the cost of sensors, you also will require moorings, transport via boats, the use of scuba 
equipment and additional personnel for these activities. Additionally, local regulations 
may require you to use particular moorings, which can vastly exceed the cost of the 
sensor. Ensure you are fully aware
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Image: © Roger Leguen / WWF

In the near future, open-source options for acoustic 
monitoring hardware and software, sensors integrated 
with on-board detection and classification capabilities, 
and networked sensors connected wirelessly will rapidly 
expand the field of acoustic monitoring
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CHOOSING AN ACOUSTIC SENSOR
Selecting appropriate equipment for any given research question is crucial, since this
choice will affect the quality of the resulting data, its suitability for analysis, and the
equipment’s longevity in the field. This chapter therefore provides supporting information
to assist in selecting an appropriate acoustic sensor for any given research objective.

However, both well-defined research questions and robust analysis frameworks are
equally important when planning an acoustic monitoring study, and these will inform
the best choice of technology. These are discussed in greater detail in Chapter 7, which
should be also consulted in advance of choosing an acoustic sensor.

Bioacoustics technology is evolving quickly, so rather than offering a comprehensive
list of hardware for particular objectives, we instead provide key technical and design
criteria to consider when selecting a model of sensor. These are listed in Table 2. Your
requirements for meeting these criteria will vary depending on the nature and length of
sensor deployments. Be aware of how the characteristics of any acoustic sensor equipment
(e.g. frequency sensitivity ranges, sampling rate, audio compression, frequency division)
may affect or bias the data they collect. These factors are discussed in Chapter 3.

To support equipment choice, a reference list of current manufacturers and models of
bioacoustics sensors for both terrestrial and aquatic environments is provided in
Chapter 8. Many commercially-available sensors are designed for deployment in all
weather, have custom programmable recording schedules and integrated units for metadata
collection (e.g. geographic coordinates). However, they may be costlier than custom or
open-source alternatives. We recommend thoroughly researching the available options and
making a decision primarily based on the key criteria in Table 2. If budget allows, trying
out several different sensors may assist in making the best choice for your project.

• An important note on data quality. While the cost of sensors will contribute
substantially to a project’s set-up and maintenance costs, we strongly recommend
always collecting the best possible quality of data for your available budget. Minimising
information loss during data collection (e.g. by recording ultrasonic data in full-spectrum
rather using frequency division) will future-proof your data by improving their potential
for further analysis with new tools. This may also allow the same data to be used to answer
other questions; for example, Orthoptera population studies have been conducted using
data originally recorded for bat surveys (Penone et al. 2013; Jeliazkov et al. 2016,  Newson
et al. 2017). Collecting data of best possible quality is especially important to ensure data
comparability throughout long-term monitoring programmes over years or decades,
during which time the hardware and software state-of-the-art will change drastically.
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Type of device Feature Key considerations

Recorder / 
detector

Digital/analogue Use a digital recorder, to enable longer recording times (onto SD card) and facilitate 
data analysis. Most new acoustic recorders record digitally, however analogue 
recorders (e.g. using tape) may be available; these have limited storage space, and 
analogue recordings must be digitised prior to analysis.

Sampling rate Sampling rate determines the maximum frequency that can be accurately 
reconstructed from a digital sound recording. This is important in wildlife monitoring 
because the sampling rate must be over twice the highest frequency in the recorded 
sounds of interest (Nyquist frequency). For recordings within human audible range 
the standard is 44.1kHz. If recording animals that produce ultrasonic calls (e.g. bats/
odontocetes), ensure recorder is able to record at the appropriate sampling rate (e.g. 
250kHz, or up to 400kHz for some bat species).

Full-spectrum or 
frequency division (bat 
detectors only)

Bat detectors record ultrasound using two major methods, full-spectrum recording 
and frequency division (e.g. Anabat). Frequency division significantly reduces memory 
demands which is useful for long-term monitoring, but loses a lot of information 
from recordings, which can present problems during later analysis. If possible 
we recommend the use of full-spectrum recorders to preserve as much useful 
information as possible.

Bit-depth Determines the amplitude resolution of recorded audio; files should be recorded at 
minimum 16bit to ensure appropriate quality.

Audio compression Ensure audio is stored either as uncompressed .wav or another lossless format (e.g. 
flac), to prevent loss of valuable information from sound recording. Avoid storing as 
mp3 or other lossy format except in exceptional circumstances, and assess the impact 
of resulting information loss beforehand.

Storage capacity Most digital acoustic recorders store data onto one or more SD cards; if recording 
for long periods, and/or recording ultrasound (which takes up more memory due to 
the high sampling rate), consider selecting a model that can hold multiple SD cards to 
extend recording time.

Battery life Average battery life should be taken into consideration ahead of purchase of 
equipment, according to needs of the study: if sensors are to be deployed for 
extended periods consider purchasing a recorder with excellent battery life or the 
capacity to attach an external battery pack or solar panel. Recording at high sampling 
rates (e.g. ultrasound) consumes more battery power.

Programmable schedule If deploying static sensors in the field for days or weeks, the ability to programme a 
recording schedule (e.g. dusk until dawn; 5 minutes per hour) is essential to conserve 
battery life and storage space. Most purpose-built bioacoustics sensors have this 
function inbuilt, but check beforehand to ensure it meets your requirements.

Durability Consider durability of recorder with regard to planned deployment, including 
environmental conditions, study duration, and potential biotic hazards (e.g. wildlife/
human interference). If intending to deploy for extended periods in challenging 
conditions, ensure that recorder is designed for this purpose, and/or consider costs 
of protecting and maintaining the device. Key considerations include biofouling; 
damage to recorder or external attachments (e.g. microphones) by wildlife or people; 
resistance to humidity and temperature (both hot and cold); resistance to water 
turbulence (aquatic environments).

Weatherproofing Many purpose-designed acoustic wildlife sensors are designed to be weatherproof 
or come in weatherproof casings. Ensure that your selected model is suitable for the 
intended deployment environment, and be aware of requirements for maintenance.

Theft/tamper proofing If deployed in habitats with high human activity, consider choosing a model with 
protective casing that allows sensor to be secured to a tree or post; or ensure that 
recorder can be protected in some way. In marine deployments consider using 
acoustic releases to avoid theft.

Cost Carefully consider costs in project budget when deciding on model of sensor to use, 
including both cost of sensor purchase and also labour cost of maintenance and 
data retrieval. Key considerations: number of sensors to be deployed (area to be 
monitored); durability; length of monitoring project; ease of data retrieval. Ensure that 
quality of recorded data is as high as possible for your available budget.
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Cost of accessories Consider cost of any additional accessories (e.g. external microphones/hydrophones) 
required to use the recorder.

Designed for terrestrial/
aquatic deployment

Ensure recorder is designed for deployment in intended environment of use.

Pre-amplification Most acoustic recorders will contain an internal pre-amplifier, however some models 
may require additional pre-amplification; check before buying.

Portability Sensors designed for remote deployment may be too cumbersome for transects, 
and handheld recorders may not be robust enough for remote deployment; consider 
portability of device in relation to proposed study methods.

Ease of use Consider how user-friendly the recorder is (e.g. intuitive interface, easily 
programmable, how easy to assemble and deploy); this is especially important 
if equipment is to be used by multiple users, e.g. conservation workers, citizen 
scientists, etc.

Microphone / 
hydrophone

Frequency sensitivity 
(frequency response)

Microphones/hydrophones are designed to be sensitive across a particular range of 
frequencies. Ensure that the microphone/hydrophone is designed for sensitivity to 
audible sound (if recording in audible range), ultrasound (if recording in ultrasonic 
range). Similarly, recording infrasound (e.g. elephant rumbles) requires highly 
sensitive, specialised microphone/hydrophne models. Variation in frequency 
response across different microphones/hydrophones can affect the detectability 
of certain animal species, if the frequency of their vocalisations falls outside of 
the optimum sensitivity range. Ensure that sounds of interest are within correct 
sensitivity range before purchase.

Directional sensitivity 
/ directionality 
(microphones only

Microphones can be directional (sensitivity concentrated in an area) or omnidirectional 
(sensitivity in all directions). The best choice depends on study requirements. 
Directional microphones may be appropriate if using a single acoustic sensor to record 
sounds from a specified direction. However, the majority of bioacoustic sensors use 
omnidirectional microphones, which have an equal detection radius in all directions, 
and can be used to localise sound sources if deployed in arrays. Many omnidirectional 
microphones can be fitted with reflectors to increase directionality.

Durability / 
weatherproofing

Even if recorder is protected in strong casing, microphones are usually more 
exposed to the elements and vulnerable to damage from water, temperature, 
humidity, biofouling and interference by wildlife. Ensure that microphone is suitable 
for use in intended environment, and consider additional protection if humidity/
precipitation exceptionally high.

Compatibility with 
recorder

Some purpose-built recorders are designed for use with specific microphones/
hydrophones; check compatibility before purchasing additional microphones/
hydrophones.

Cost Consider cost of replacement microphones/hydrophones when purchasing any 
recorder.

Maximum operating 
depth (hydrophones and 
marine sensors only)

Hydrophones are designed for use in depths up to a specified maximum; ensure that 
you select the correct model according to needs of study (i.e. choose a greater depth 
for deeper-water deployments).

Pre-amplification Certain recorders require that hydrophones/microphones include an integrated 
preamplifier; check these requirements before purchase.

Type of device Feature Key considerations
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Acoustic sensors are increasingly being used 
to monitor illegal human activities such as the 
poaching of wildlife and illegal logging

Image: © naturepl.com / Bruce Davidson / WWF
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BEST PRACTICES IN PASSIVE ACOUSTIC MONITORING
This chapter provides guidelines for acoustic monitoring survey design, sensor deploy-
ment, and subsequent analysis. Its main aim is to provide conservation and ecology re-
searchers and practitioners with information to support the selection and deployment of
appropriate equipment, and to carry out initial acoustic signal processing and analysis. It
has been developed from a combination of practical experience, a comprehensive review
of the acoustic monitoring literature, and the results of a purpose-developed WWF-UK
survey of users of acoustic sensors from across the scientific, NGO and consulting sectors
(for details see acknowledgements). These guidelines are applicable to research in both
terrestrial and aquatic environments, although each has its own technological and analysis
challenges, which are highlighted when necessary.

The survey design information in this chapter is complementary to earlier chapters cover-
ing current uses and limitations of technology (Chapter 4), assessing the need
for an acoustic survey (Chapter 5) and choosing a sensor (Chapter 6). However, it is
not intended as a substitute for experience of either acoustics or biodiversity monitoring
more generally, and there are many cases where departures from these guidelines will be
appropriate depending on the context. Prior knowledge and experience of good practice
in ecological surveying and monitoring is essential to ensure robust study design and
data collection protocols. Best-practice for acoustic surveys involves many complex
considerations whose details are beyond the scope of this guide, so Chapter 9 provides a
complementary list of further reading.

This chapter’s guidelines follow a series of steps for planning and conducting an acoustic
monitoring survey, which are listed below. They are discussed in broadly chronological
order, from early study design to implementation and analysis, with references and
examples provided for clarity. However, they are not independent from one another. Good
study design is an iterative process, and will be influenced at all stages by the combination
of overall objectives, species or taxonomic groups of interest, environmental factors
and resource budgets. In order to design rigorous and effective ecological surveys it is
important to understand how these elements interact with one another.

1. Defining clear objectives
2. Planning data management and analysis
3. Designing survey and data collection protocols
4. Testing equipment
5. Pilot surveys
6. Sensor deployment: practical considerations
7. Signal processing and acoustic analysis
8. Conducting further statistical analyses
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7.1. Defining clear objectives
As with any ecological research, clear objectives must be defined prior to beginning data 
collection (Bat Conservation Trust 2016). Information on the current uses and limitations 
of acoustic monitoring, which can be used to assist in this stage, is available in Chapters 
3, 4 and 9 (further reading). Consider both short and long-term questions and objectives. 
These will inform all aspects of study design, which will then affect the suitability of your 
data for appropriate statistical analysis.

•	 Short-term objectives can include estimating species richness, occupancy or 
distribution, activity patterns or abundance (see Section 4). These could be for a 
single animal species (e.g. the abundance of a particular bird species), taxonomic 
group (e.g. bat species richness), or entire acoustic community (e.g. species richness of 
vocalising birds, bats and insects).

Longer-term monitoring objectives involve estimating changes to measured ecological 
parameter(s) over time, and often in response to environmental change. These could 
include estimating multi-year population trends of a particular species or taxonomic 
group (e.g. bat population trends (Jones et al. 2013; Barlow et al. 2015)), estimating 
changes to species abundance in response to anthropogenic activity (e.g. urbanisation, 
poaching), or monitoring the effectiveness of conservation interventions (e.g. the effects of 
anti-poaching initiatives on gunshot activity and primate abundance (Astaras et al. 2015). 
If planning a monitoring programme, it is critical to design data collection regimes that 
ensure the data are appropriate for robust trend analysis (Jones et al. 2013; Frommolt & 
Tauchert 2014) (for more detail see Section 7.6).

Be prepared to communicate and collaborate with other people who work with acoustic 
monitoring in similar settings. This will allow you to share practical knowledge about 
the use of acoustic monitoring technology, and to learn from challenges others have 
experienced ahead of commencing surveying. 

7.2. Planning data management and analysis
Plan in advance how the data will be analysed. Conservation technologies such as acoustic 
sensors are becoming increasingly user-friendly to deploy and maintain, however without 
understanding in advance how the data you collect will be used to answer your questions, 
there is a risk of generating large volumes of data that are challenging to analyse and 
expensive to store (Walters et al. 2012) (see also Chapter 5). Design a clear workflow 
for managing, processing and analysing data, and test it on representative data 
(see Chapter 7.5) in advance of commencing larger-scale surveying.

During this stage, consider what later statistical analyses you intend to carry out using 
the data (e.g. occupancy or distribution modelling, density or abundance estimates, 
population trend modelling). We recommend consulting ecologists with statistical 
expertise in advance, to ensure your intended data collection regime will be suitable to 
answer your intended questions.
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7.2.1. Data storage and management
Be prepared to manage a large number of files. Design a relational database (e.g. SQL, 
MS Access) to link each audio file with associated metadata (e.g geographic co-ordinates, 
temperature). Each survey should have a unique identifier as its primary key and a unique 
filename; this is vital to avoid losing or confusing files (see Chapter 7.9). Increasingly 
the field of acoustic monitoring is moving towards data collection and storage standards to 
facilitate comparison across studies, and some existing frameworks are available e.g. Pumilio, 
ARBIMON (Villanueva-Rivera & Pijanowski 2012; Aide et al. 2013; Roch et al. 2016).

7.2.2. Call detection and classification
If identifying individual sounds from recordings, develop a workflow to process raw 
sound files and metadata to produce meaningfully annotated data for use in subsequent 
analyses. For example, in an acoustic bat monitoring study this will involve tools to detect 
any bat calls within sound recordings and classify them to species. This process can be 
conducted manually or using automated tools where available (Figure 5). This may 
involve proprietary software (e.g. SonoChiro, SonoBat) and/or open-source tools (e.g 
BatScope, iBatsID), and must also include manual validation (see Chapter 7.10).

Developing bespoke analysis tools and resources, such as automated sound classifiers or 
species call libraries, may be most appropriate. Although time and budget-intensive to 
develop, these can help to make a monitoring project viable in the long-term and may also 
be useful for other researchers in future (for example, see Case Study 1: Indicator 
Bats). Funding for research is increasingly contingent on making data publicly available, 
however there are still large taxonomic and geographical biases in available sound 
libraries and classifiers (see Chapter 4.5). Consider making any hardware/software 
tools or call libraries you develop during your research available as public resources to the 
acoustic monitoring community. Improving availability of these resources is critical to 
advancing the field more broadly (see Section 4.5).

•	 A note on selecting acoustic analysis software. A wide range of commercial and open-
source software programs are currently available for acoustic signal processing and 
analysis. At minimum you will require software to visualise and annotate spectrograms 
(e.g. Figure 3) but most offer additional features. Choosing a program that facilitates 
fast processing of multiple audio files will save a great deal of time. See Chapter 8 for 
examples of currently available programs. 

7.2.3. Defining a ‘detection’
Establishing a fully independent animal detection in acoustic data is inherently difficult, since 
multiple calls recorded by a sensor during a sampling period may have come from the same 
individual. There is therefore not a simple relationship between the number of detected calls 
and the number of animals in a location (Marques et al. 2013) (see Chapter 4.1). 

When making inferences about activity or animal density from acoustic data, it is 
therefore critical to define what constitutes a single detection. This should be defined in 
advance and kept consistent throughout the project (Reason et al. 2016). It should take 
into account biological knowledge of species of interest, such as species-specific call rate, 
and may need to be ground-truthed. For example, in animals that call more infrequently, 
a single recorded call may be considered a detection. In contrast, echolocating bats emit 
ultrasonic calls at very regular, sub-second intervals, and a single detection is typically 
defined as a ‘bat pass’, which consists of a discrete series of echolocation calls separated 
from all other calls by a given time interval (usually at least one second) (Figure 8).
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Figure 8: A single ‘bat pass’, consisting of a discrete sequence of calls coming from the 
same echolocating species, separated from all other calls by a specified time window. 
For bats this constitutes a single detection, however for many other animals that call less 
frequency a single call may constitute a detection. This should be informed by biological 
knowledge of the animal(s) being studied.

7.2.4. Soundscape indices
Soundscape indices enable global metrics of acoustic complexity and diversity to be 
calculated from recordings without identifying individual vocalising species (reviewed in 
[9]). Functions to calculate many indices are included in the R packages seewave (Sueur 
et al. 2008a) and soundecology (Villanueva-Rivera & Pijanowski 2016). In many studies 
these have been successfully applied as proxies for a range of biodiversity metrics such as 
along habitat gradients (see Section 4.3). For example, acoustic entropy indices (proposed 
as analogous to alpha-diversity) have been shown to correlate to forest habitat intactness 
metrics (Sueur et al. 2008a), and trends in acoustic richness index values have been shown 
to correlate to observed species richness between woodland sites (Depraetere et al. 2012). 

However, there is still little scientific consensus about whether these relationships 
between indices and other biodiversity metrics are generalisable, and it is important 
to be critical of results (see 3.2.3). If making ecological inferences using indices, you 
should collect ground-truth biodiversity data, ideally with other survey methods, across a 
representative subsample of sites.

7.2.5. Sound localisation using microphone/hydrophone arrays
Deployment of multi-sensor arrays enables calling individuals to be spatially localised 
using the differences in time of call arrival at each sensor, e.g. (Blumstein et al. 2011; 
Wilson et al. 2014; Stevenson et al. 2015) (see also Chapters 3 and 4). Alongside 
facilitating behavioural studies, these can also improve species density and abundance 
estimates via methods such as spatially-explicit capture-recapture [Stevenson 2015]. Such 
analysis methods are beyond the scope of this guide, but a useful primer on microphone 
arrays is provided in (Blumstein et al. 2011) and see Chapter 9 for recommended 
references that cover these in more depth.

7.3. Designing survey and data collection protocols
Rigorous survey and sampling design is critical in order to collect good ecological data, 
and the decisions made at this stage will affect analysis and interpretation of your data. 
However, best-practice in ecological survey design is a broad subject, and offering 
comprehensive advice is beyond the scope of this guide. In this section we instead 
highlight a number of key considerations that are particularly relevant to designing an 
acoustic monitoring study. 
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7.3.1 Important sampling parameters Sampling rate.
The required sampling rate (kHz) for recording will depend on whether animals of 
interest vocalise in audible, ultrasonic or infrasonic range. The sampling rate must be 
at least twice the highest call frequency of interest (Nyquist frequency) to resolve all 
frequency information. For example, for a bat species whose highest call frequency is 
100kHz, sampling rate must be a minimum of 200kHz; in contrast, animals vocalising 
within audible range (such as birds and most mammals) can be successfully recorded 
at 44.1kHz. Table 3 provides information on minimum sampling rates for different 
taxonomic groups.

Detection distance. Detection distance (or detection space) is the effective three-
dimensional volume around an acoustic sensor within which a given sound can be 
detected (Figure 9a). This is not an intrinsic property of the acoustic sensor itself, 
although more sensitive microphones/hydrophones can detect sounds from a greater 
distance. It is instead affected by the sound’s volume and frequency (i.e. how rapidly it 
attenuates to below a perceptible level, see Section 3.1). In general, animals calling at 
higher amplitudes (more loudly) will be detected at greater distances than those calling 
at lower amplitudes (more quietly), and higher frequencies also attenuate more quickly 
than lower frequencies.

Detection distances are also affected by site-specific environmental factors such as the type 
of medium (air/water), temperature, pressure, humidity, ambient sound levels, and habitat 
structure such as vegetation and buildings. Different species are thus more readily detectable 
by acoustic sensors than others, and this can vary between habitat types (Figure 9b)

Figure 9: The effects of call volume, distance and clutter on detectability of animal 
calls. Sounds emitted within a microphone/hydrophone’s effective detection radius 
will be detected (A), while animals calling outside this radius will be missed (B). A 
sound’s detection distance is affected by the volume and frequency of a sound, and by 
environmental factors such as habitat clutter (B).
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Detection distance is an important parameter in acoustic wildlife monitoring, since it 
affects the effective spatial area coverage of an acoustic sensor network, and thus has 
implications for estimating animal density (Lucas et al. 2015). Since animals vocalising 
at higher volumes have larger effective detection distances, biodiversity metrics (e.g. 
Species richness) estimated from acoustic data alone can also be biased towards more 
detectable species (Darras et al. 2016). It is therefore important to test acoustic sensors 
during study planning, in order to estimate detection distances of sounds at a range 
of frequencies and distances from the microphone (see (Darras et al. 2016), and also 
Section 7.8). For more detailed discussion and methods see (Merchant et al. 2014; 
Kalan et al. 2015; Darras et al. 2016)

7.3.2 Spatial sampling regime
The optimal spatial arrangement of sensors in the landscape will be affected by a range 
of factors, including survey objectives and the vocalising behaviour and detectability of 
animals of interest. Comprehensive guidelines on spatial sampling in ecological surveys 
are beyond the scope of this guide, but this section discusses several important factors to 
consider when designing a spatial sampling regime with acoustic sensors.

Static autonomous detectors or transects. Transects (e.g. walked, cycled, driven, boat-
towed) can cover larger areas for less effort (e.g. (Jones et al. 2013)). However, data 
collected with static detectors are generally considered more suitable for estimating 
animal density and activity (Marques et al. 2013; Lucas et al. 2015; Newson et al. 2015a), 
and are more commonly used in current acoustic monitoring studies.

Spatial arrangement of static sensors. A schematic of the spatial layout of a static acoustic 
sensor network is shown in Figure 10, with the detection radius each sensor shaded in 
red. The size of detection radius varies depending on the volume and frequency of sounds 
of interest (for example, low frequency elephant calls (Lehmann et al. 2014) travel for 
much longer distances than insect calls or ultrasonic bat calls) and habitat characteristics 
such as vegetation clutter (Darras et al. 2016)(Figure 9).

The arrangement of sensors and the required coverage of an area will therefore depend on 
survey requirements. For example, to investigate animal species distribution and/or activity 
patterns across a large geographical area, a random stratified sampling approach is likely 
to be most appropriate, with sensors placed across a representative sample of habitat types 
(for example the large-scale deployment of detectors in the Norfolk Bat Survey (Newson 
et al. 2015b)). Investigating species presence or richness trends across a habitat gradient 
will require sensors to be placed in appropriate locations across the area of interest (e.g. in 
a range of habitats ranging from rural to urban). It is also important to take sound-specific 
detection distances and required survey area coverage into accountwhen choosing a spatial 
arrangement of sensors (see 7.5.1). For example, louder and lower-frequency sounds such 
as elephant calls and gunshots travel much greater distances than high-frequency or low-
amplitude sounds (e.g. bats, invertebrates), so a much sparser network of sensors may be 
needed to achieve even coverage of the complete study area.
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Figure 10: An example schematic 
of the spatial arrangement of an 
acoustic sensor network. Each 
sensor is shown as a black dot, 
with its detection radius shaded 
in red. The size of a detection 
radius varies according to sound 
volume, frequency and habitat 
characteristics; for example, 
louder bird calls will be detectable 
at greater distances than quieter 
insect calls.

•	 A note on the number of sensors. The number of acoustic sensors available for 
deployment will be constrained by the project budget. More sensors will be required 
for finer scale, temporally synchronised  sampling of a given geographical area during 
a discrete time period (e.g. if monitoring a forest for illegal activity, or investigating 
phenology of an animal population). However, a small number of sensors can suffice for 
studies investigating trends such as species abundance and activity levels, occupancy, 
habitat associations and community ecology metrics. In such cases, each sensor can 
be used to sample at multiple locations, although each location should be sampled for 
multiple units of sampling time (e.g. over several days/weeks) to enable calculation of 
detection means and error estimates (see 7.5.3).

7.3.3 Temporal sampling regime and survey replication
Temporal sampling regime incorporates a range of factors. This includes defining a 
single sampling period for data analysis (in minutes/hours/days depending on survey 
objectives), and for longer-term static sensor deployments it includes daily programmed 
recording schedules and the total length of deployment. It also includes replication of 
sampling to calculate averages and error estimates.

Daily programmed recording schedules should account for the time of day that animals 
of interest vocalise (e.g. dawn, dusk, night). Many ultrasonic detectors use triggers that 
only record when ultrasonic sound exceeds a specified amplitude threshold; these should 
be tested to ensure they record species of interest. If estimating species richness of 
vocalising animals in an area, it may be necessary to sample over several days to ensure 
less vocally active species are detected (Froidevaux et al. 2014; Klingbeil & Willig 2015; 
Bat Conservation Trust 2016). 
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Study subject Frequency 
range

Example sound 
sources

Typical 
frequency range 
of sounds

Minimum sampling rate References

Mammals Audible Primates, 
cetaceans, seals

20Hz – 20kHz 44.1kHz (Klinck et al. 2012b; Heinicke 
et al. 2015)

Ultrasonic Bats, dolphins, 
echolocating 
whales

20kHz – 200kHz 192kHz,  but often 
higher (e.g. up to 1000 
kHz for small cetaceans) 
depending on call 
frequency

(King et al. 2013; Newson et 
al. 2015a)

Infrasonic Elephants, many 
baleen whales

10Hz – 35Hz 44.1kHz, but can be 
lower if only interested in 
infrasound (e.g. 1-2kHz)

(Stafford et al. 1998; 
Thompson et al. 2010)

Birds Audible Most vocalising 
birds, e.g. 
passeriformes

20Hz – 20kHz 44.1kHz (Frommolt & Tauchert 2014; 
Sanders & Mennill 2014; 
Petrusková et al. 2015)

Amphibians Audible Anurans (calling 
frogs/toads)

20Hz – 20kHz 44.1kHz (Weir et al. 2009; Stevenson 
et al. 2015)

Invertebrates Audible Orthoptera, 
snapping shrimp

20Hz – 20kHz 44.1kHz (Hugel 2012; Lehmann et al. 
2014; Rossi et al. 2016)

Ultrasonic Orthoptera 
(crickets/ 
grasshoppers), 
cicadas

>20kHz 192kHz, but possibly 
higher depending on call 
frequency

(Penone et al. 2013; Zilli et al. 
2014, Newson et al. 2017)

Fishes Audible Teleost fish 20Hz – 20kHz 44.1kHz (Nordeide & Kjellsby 1999; 
Lobel 2002; Parsons et al. 
2016)

Anthropogenic 
sound

Audible Gunshots, 
chainsaws, traffic, 
mechanical or 
electrical noise

20Hz – >20kHz 44.1kHz (Astaras et al. 2015; Gil et al. 
2015)

Ultrasonic Boat sonars 20kHz – 200kHz 50kHz

Infrasonic Traffic, city 
infrastructure, 
mining or seismic 
activity

10Hz – 20kHz 44.1kHz, but can be 
lower if only interested in 
infrasound (e.g. 1-2kHz)

(Wrege et al. 2010; Merchant 
et al. 2014)

Soundscapes Audible Whole soundscape 
indices calculated 
on entire 
spectrograms

44.1 kHz, but higher if 
ultrasonic included

(Sueur et al. 2008b, 2014; 
Pijanowski et al. 2011b; 
Harris et al. 2016)

Table 3: Key taxonomic considerations for acoustic monitoring, including typical frequency range of animal 
vocalisations and minimum sampling rates for successful recording.
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The probability of detecting a species during any time period is affected by behavioural 
factors such as daily or seasonal patterns in vocalising behaviour (e.g. [15,67]), and 
whether these are affected by environmental covariates (Kalan et al. 2015). This variation 
means that sampling should be repeated multiple times within any field season to allow 
for calculating averages and error estimates. For static autonomous sensors, this may 
simply involve deploying the sensor for sufficient time to cover multiple sampling periods. 
For example, if surveying birds at the dawn chorus, the sensor could be deployed for two 
weeks, programmed to record for the appropriate hours in each day. 

During longer-term monitoring, sites must be repeatedly sampled over seasons and 
years in order to calculate trends (Heinicke et al. 2015; Campos-Cerqueira & Aide 2016). 
Methods should be kept consistent between sites and years.

•	 Example temporal sampling regime. A researcher wants to investigate abundance 
trends of a particular bat species over several years, using static ultrasonic detectors. In 
this investigation, a sampling period is one night of recording (from which the number 
of bat detections can be estimated). The sensor is programmed to record from dusk 
until dawn each night, and is deployed in each location for two weeks. The data are 
retrieved and processed to calculate the number of bat species detections per night of 
recording, enabling averages and estimates of error to be calculated. The same sites are 
sampled repeatedly over multiple years, using the same regime, producing data that can 
be used to model abundance trends.

7.3.4 Metadata 
Appropriate metadata must be systematically recorded alongside each audio recording, 
since these must be accounted for in any statistical analysis. These include any salient 
environmental and ecological data collected in addition to acoustic recordings, and are 
likely to include geographic co-ordinates (e.g. latitude-longitude); recording time/date; 
temperature, precipitation, humidity and other climate variables; land cover and other 
variables relating to habitat structure. They should also include technical specifications of 
the sensor such as sampling rate and microphone model (Roch et al. 2016).

7.4. Testing equipment
Test your equipment regularly, ideally prior to each survey deployment, or at the very 
least at the beginning of each field season. As well as familiarising yourself with the 
technology, these will ensure sensors are recording data correctly and enable the testing of 
key parameters related to deployment and analysis, helping refine study design (5.6) and 
intended data analysis protocols (5.5). Key considerations while testing equipment may 
include the following.

•	 Ensure sensor is recording correctly. This includes checking audio recording quality (are 
there high levels of environmental or electronic noise which could interfere with data 
analysis; if recorded signals are clipping the sensitivity or gain levels may be set too high), 
checking that trigger thresholds for ultrasonic detectors are set at an appropriate level, 
and ensuring that the sensor is successfully recording calls from the animal(s) of interest.

•	 Test detection distances. Test and record detection distances of sound playbacks 
at a range of frequencies and distances from the microphone (see discussion of 
‘detectability’ in 7.3, and for more information and methods see (Merchant et al. 
2014; Darras et al. 2016)). This improves the comparability of recordings collected 
with multiple sensors or across different time periods, and is important for statistical 
estimates of parameters such as population density.
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•	 Test microphone sensitivity. Microphone and hydrophone sensitivity may change over 
time due to natural wear. Set performance benchmarks for microphone/hydrophone 
sensitivity, such as minimum acceptable detection distances across a range of 
frequencies. Prior to each deployment microphones/hydrophones should be tested to 
ensure they reach this standard, and replaced if they fall below the threshold level. This 
improves the statistical comparability of recordings made using separate microphones/
hydrophones (Merchant et al. 2014).

•	 Check parameters related to sensor deployment. These may include approximate 
battery life, storage capacity (how many hours/days of recording can be stored on an 
SD card), and ensuring that programmed recording schedules are working correctly 
prior to deployment.

7.5. Pilot surveys
In addition to testing your equipment it may be appropriate to conduct smaller-scale 
pilot surveys, for example at a subsample of planned sites. This will be especially useful 
when planning large-scale surveys or long-term monitoring programmes, since it will 
help refine survey and analysis methods in advance, as well as highlighting any potential 
problems early in the project timeline. Considerations during pilot studies may include 
the following.

•	 Ensure sensors are working correctly in the field. This may include testing how 
environmental conditions (e.g. humidity, precipitation, water depth) affect sensor 
function, and adjusting deployment methods accordingly. It may also include ensuring 
that the spatial arrangement of sensors in the habitat (e.g. deployment height and 
position relative to vegetation) is not preventing sounds of interest from being recorded 
(see also 7.3.1). For longer-term deployments, it is also useful to regularly test whether 
microphone sensitivity is diminishing over the course of a deployment, for example due 
to factors such as exposure to moisture and diminishing battery life.

•	 Training field staff involved in equipment maintenance and data collection. Maintaining 
an acoustic sensor network can be labour intensive if the environment is challenging, 
if multiple sensors are deployed or if deployments are over extended time-frames (e.g. 
months, years). Pilot studies provide an opportunity to train staff to regularly check 
sensor function and download data from SD cards, as well as any protocols related to 
preliminary data management, metadata collection and analysis. 

•	 Test signal processing and analysis methods on representative data. A small pilot 
dataset will highlight many problems or unresolved issues with the analysis workflow, 
and ensure that the data collected are suitable for subsequent analysis before larger-
scale surveys are conducted at greater cost. 

7.6. Sensor deployment: practical considerations
This section specifically covers practical considerations for deploying sensors. This 
includes spatial placement in the habitat, environmental factors that might impact sensors 
or data collection, and collection of additional relevant data.
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7.6.1 Microphone/hydrophone positioning
Microphone. The position of a microphone relative to the ground and to clutter in the 
environment (e.g. vegetation) affects sound transmission and therefore detectability 
(Figure 11; see also section 5.6). If possible mount microphone(s) on a pole at a 
suitable height above ground (1m or higher) and at least 1.5m away from trees, shrubs 
and water bodies to minimise acoustic interference (Newson et al. 2015a). If this is not 
possible, when choosing sites be aware that position of microphones (e.g. attachment to 
tree trunks) may affect sound transmission and detectability. 

Hydrophone. Underwater sound transmission is affected by the position of hydrophones 
relative to the water surface and bottom substrate, as well as by physical characteristics 
of aquatic habitats such as clutter (rocks/reefs), substrate (mud/sand/rock), bathymetry 
and water flow (currents/tides). When acoustic sensors are anchored in marine habitats, 
hydrophones should be placed at least 5 m below the sea surface to reduce acoustic 
interference from waves and at least 1-2 m from the bottom, if water depth allows (Figure 
12). Sound propagation is particularly affected by depth in shallower water, for example 
in rivers and shallow lakes (Forrest et al. 1993) so if possible deploy hydrophones at a 
minimum depth below the surface (e.g. 10 cm) to reduce acoustic interference in recordings 
(Desjonquères et al. 2015). In locations with strong water flow, hydrophones should be 
positioned such that hydrodynamic noise is minimised in recordings (Holt & Johnston 
2015). Be aware that small cetacean calls are often highly directional so may not be detected 
if the hydrophone is positioned close to the bottom or surface.

Three-dimensional sampling. Different animals vocalise at different strata within a 
habitat (e.g. ground/canopy); this should be taken into account when designing spatial 
arrangement of sensors, and should be kept consistent between sites (Britzke et al. 2013). 
The full three-dimensional structure of a habitat may need to be sampled (Froidevaux 
et al. 2014). For example, when estimating bird species richness in a forest location, 
solely deploying a sensor at ground level may fail to detect vocalising birds in the canopy. 
Deploying microphones at multiple levels in the environment will improve the chance of 
detecting the full diversity of vocalising birds at the location. 

An additional note on aquatic sensor deployment. Underwater deployments, 
especially in marine areas, are intrinsically more logistically challenging than in the 
terrestrial realm. Consider logistics well in advance. Deploying underwater recording 
devices can be very dangerous. Only deploy via scuba diving methods if you are fully 
trained and qualified.  Knowledge and experience of using ropes and moorings is 
essential before attempting at sea deployments/retrievals from boats. Light moorings 
with smaller buoys and no heavy weights avoid some of the danger of weights and 
buoys, as do sonar acoustic releases, although these are expensive. Wave movement can 
also cause hydrophones to move and change position. Using a secondary sub-surface 
buoy with a sinking rope which pulls the two buoys together avoids this, as does using 
two weights, one heavy and one light (see Figure 12). Anchor weight should be chosen 
with reference to local current and wave conditions (Dudzinski et al. 2011). For further 
discussion of static passive acoustic device deployment at sea, see (Dudzinski et al. 
2011). If hydrophones are being towed by a vessel, the length of tow cable (usually at 
least 100m), hydrophone depth and vessel speed will affect recording quality, see (Todd 
et al. 2015) for more details. 

7.6.2 Key environmental considerations
A variety of environmental factors can cause problems during sensor deployment. These 
are summarised, and potential solutions discussed, in Table 4.
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Figure 11: Microphone positioning in the 
terrestrial environment, in this case for 
recording bat activity. The microphone should 
be positioned to ensure the target species will 
be recorded; here the higher flying species is 
missed by the detector, but the lower flying 
species is recorded.

Figure 12: Marine sensor deployment, using a 
single device with a hydrophone and recorder. The 
mooring shown here is designed to minimise the 
drag caused by wave movements, reducing the 
chance of the detector moving, as is shown here by 
the smaller buoy diving below as a wave goes past.
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7.6.3 Ambient sound levels (including anthropogenic noise)
Ambient environmental sound, whether biotic (other animals), abiotic (landscape/
climate/geological) or anthropogenic (e.g. machinery, vehicles, human speech) will affect 
the quality of sound recordings and therefore can introduce error into analyses (Pieretti et 
al. 2011). Ambient environmental sound is a particular problem underwater, where sound 
travels much further. Consider the local sound environment when deciding on sensor 
placement; for example, it may be possible to place sensors in a quieter location within 
the designated survey area. Be prepared to encounter these challenges if surveys are to be 
carried out in noisy habitats (e.g. urban or industrial areas). 

7.6.4 Maintenance and data retrieval
Batteries should be changed regularly and data retrieved from SD cards before they 
become full.  Regularly check data to ensure sensors are working correctly. This is 
especially important for long-term deployments (weeks/months). If monitoring is at 
larger-scale, multiple trained users may be required to maintain sensor networks and 
regularly download data. It is becoming possible to transmit data from sensors via mobile 
network to a central hub (e.g. (Baumgartner et al. 2013)), however this is currently 
expensive, technically complex and few off-the-shelf solutions are available.

7.6.5 Additional data collection
Collect appropriate metadata in addition to acoustic recordings (see 7.3.4). It may also be 
appropriate to collect additional ecological data. For example, if using acoustic monitoring 
to assess biodiversity, consider collecting ground-truth community diversity data by other 
methods (e.g. traditional field surveys) at a representative subset of deployment sites. This 
will assist in understanding how acoustically-derived metrics correlate to other metrics of 
biodiversity in your study system.

7.7. Storing and managing audio data and metadata
Once data are collected from recorders and downloaded to computer, it is important to 
store and manage them appropriately:

•	 Record and store audio recordings in highest quality format, preferably .wav, or 
otherwise a lossless compressed format (e.g. flac). Although MP3s take up markedly less 
storage space, they also involve a substantial reduction in recording quality; this may 
not be audible, but will impact statistical analyses of the data.

•	 If possible check the quality of recordings regularly during a field season (for example to 
ensure there is not excessive environmental or electronic noise), to allow any problems 
to be addressed at the time rather than being discovered afterwards. Ideally begin 
processing data as they are collected rather than waiting until the end of field season, to 
highlight any problems and reduce the backlog of unprocessed data.

Link audio files to associated metadata in a relational database (see 7.2). Each audio file 
should have a unique filename, which should minimally include date, time and location, 
as well as project name and any other important information. For example a recording at 
10:34pm on 12/08/2016 might be ProjectName_LocationName_20160812_223406.wav. 
Back-up audio files and databases regularly to avoid losing data. 

7.8. Signal processing and acoustic analysis 
The first stage of analysis involves signal processing and extracting relevant ecological 
information from sound recordings. This section discusses the detection and classification 
of individual sounds of interest (e.g. animal calls) and the calculation of acoustic indices.



ACOUSTIC MONITORING  56

Environmental factor Potential issue Potential resolutions

Precipitation Can severely damage recorder and 
microphones. Heavy rain also causes noise in 
recordings, which can mask sounds of interest.

Ensure that recorders are adequately sealed in 
weatherproof housing. Microphones are exposed to 
the elements, and their membranes will deteriorate 
through moisture damage, even in models designed 
to be weatherproof. Always position microphones at 
the appropriate orientation to reduce water reaching 
the membrane; this depends on the model, but is 
often horizontal. Replace foam heads on mics if they 
become waterlogged.

Humidity Can severely damage microphone and recorder, 
including sensitivity of microphone

Ensure that recorders are adequately 
weatherproofed. Humidity is a major problem in 
tropical areas, so consider protecting microphones 
if needed (e.g. by covering the aperture with 
cellophane). However, be aware of the potential 
trade-off between protection and maintaining 
sensitivity, and test sensitivity of protected mics.

Noise levels in environment Noise can mask target sounds, increases 
noise in recordings making analysis more 
challenging, and can interfere with statistical 
analysis of soundscapes.

Carry out test recordings in advance of full deployment, 
and choose location for microphone/hydrophone in 
order to minimise extraneous noise. If possible, seek 
to minimise overlap in frequency range between 
environmental noise and animal calls of interest. 

Water flow 
(aquatic only)

Water flow over hydrophone (e.g. freshwater/
ocean environments) can cause noise in 
recordings and mask sounds of interest. If 
currents are strong can also cause manual 
damage to equipment.

Select deployment location in order to minimise water 
flow across hydrophone, and consider suitability of 
environment for acoustic monitoring. 

Wildlife damage Wildlife damage to equipment will depend on 
the study system, and is generally more of a 
problem in highly biodiverse areas e.g. in the 
tropics. In marine environments biofouling or 
attachment of sessile organisms (e.g. barnacles) 
can be a problem.

Be aware of potential hazards in the intended 
deployment area. In areas where wildlife damage 
is expected (e.g. with high primate density) conceal 
and if possible protect recorder and microphones in 
tamper-proof casing. Protect microphone cables to 
reduce chewing by rodents/insects. Regularly check 
microphones to ensure weatherproofing remains intact. 

Damage/theft by humans This can be a major problem; it is difficult 
to protect completely against theft or human 
damage. Some areas are more at risk than 
others, e.g. in urban /densely populated 
regions.

Protect valuable detectors in locked boxes and/or 
padlock to secure elements in the landscape (e.g. tree 
trunks), however microphones must still be exposed for 
recording. Insure equipment if possible and select study 
sites carefully to minimise risk. Consider attaching a note 
with contact details to equipment, if appropriate.

Table 4: Key environmental considerations for deployment of acoustic sensors. This includes the potential issues posed 
by particular environmental factors, and possible resolutions.
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7.8.1 Signal processing: generate spectrograms
When first imported into audio software, raw sound files will generally be displayed 
in the time-amplitude domain, and the first step in analysis is usually to generate a 
spectrogram (Figure 13). This displays a sound recording in the time-frequency domain 
with amplitude shown as colour intensity, and enables sounds of interest to be visually 
identified. All audio analysis software provide Fourier transform functions to produce 
spectrograms, and to adjust key parameters such as window function and window length. 
It is important to understand how these parameters can affect subsequent analyses (see 
Chapter 3.4 and recommended further reading, Chapter 9), and how this varies across 
different software tools (see next section).

7.8.2 Sound detection and classification
Detection and classification can be carried out using manual or automated methods, 
but is likely to involve some combination of both (semi-automated). Detection involves 
identifying where sounds of interest are present in a recording (spectrogram in Figure 
14), and classification involves classifying those sounds (e.g. to species level) based on 
some combination of discriminating features (Figure 14). These methods are discussed 
in detail in Section 3.6, with an example workflow of the entire process (Figure 5).

If multiple analysts will be manually classifying data it is important to standardise protocols 
in advance to minimise errors associated with skill level (Heinicke et al. 2015). It is also 
critical to understand the software you have chosen; for example, particular software may 
visualise spectrograms with different colour schemes such that certain sounds become 
more or less visible, which can lead to error in manual annotations. Use high quality 
reference materials for manual analysis, including books, published scientific literature and 
published call libraries. Such data are deficient for many taxonomic groups, habitats and 
regions. It may be possible to contact particular researchers or institutions to request use 
of unpublished reference material. However, it may also be necessary to collect your own 
reference recordings prior to commencing large-scale surveys or monitoring.

Many bioacoustics software include automated tools for detection and/or classification of 
animal vocalisations, in particular bats and cetaceans (see Chapter 8). Regardless of the 
source, all automated call ID tools are subject to error, which is often inadequately reported 
for proprietary software (see 5.5). Always treat results critically. Cross-check their outputs 
manually and/or with other software tools, either for the entire dataset if possible, or on 
a sufficiently large representative subset to assess error. Any robust analysis pipeline for 
processing acoustic data will involve regular cross-checking and reporting of error rates. For 
a best-practice guide to automatic sound classification, see (Reason et al. 2016). 
	
When analysing large datasets, it is often useful to use automated methods as a ‘first 
pass’, to identify possible relevant sounds and thus reduce the size of the dataset that 
must subsequently be manually checked. If this is the case, the sensitivity thresholds 
of detection/classification tools should usually be set high enough to minimise false 
negatives, in order to reduce the risk of discarding salient data (Blumstein et al. 2011). 

More generally, error rates should be considered in the context of study objectives. For 
example, monitoring endangered species will often require false positive detections to be 
minimised, to avoid overestimating presence or abundance. However, monitoring illegal 
activities for example may require false negatives to be minimised, to ensure all possible 
detections are investigated.

Developing your own project-specific automated tools may be necessary. This offers 
advantages such as training classifiers on relevant data and better understanding problems 
associated with their use; however, this requires statistical and computational expertise. 
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Figure 13: Generating a spectrogram (bottom) 
from an audio recording in the time-amplitude 
domain (top). Sounds, in this case pipistrelle bat 
echolocation calls, are visible as colour density 
on the spectrogram.

Figure 14: Sound detection and classification 
schematic. During detection, sounds of interest 
(in this case pipistrelle bat calls) are located on a 
spectrogram and annotated, either using manual 
or automated methods. Features are extracted 
from the sound describing its spectral and 
temporal characteristics (middle box). These 
are used to classify the sound to a category 
(usually species) using either automated (e.g. 
machine learning) or manual methods (e.g. a 
classification key).
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If you develop project-specific tools, consider sharing them in an open-source way. Acoustic 
monitoring is an evolving field, and sharing data and methods with the wider community 
will help to expand the toolbox available for ecology and conservation research.

7.8.3 Calculating acoustic indices
Acoustic indices summarise spectral and temporal characteristics of a sound recording 
without identifying individual sounds. Indices vary in their complexity and applications 
for the study of acoustic communities; for discussion of their current uses, see Chapter 
4.3. Measures of mean sound pressure level, or distribution of sound energy across broad 
frequency bands, can quantify the overall acoustic characteristics of monitored habitats 
(Merchant et al. 2014). These may assist in understanding how the acoustic properties of 
an environment affect animal ecology and behaviour, or impact sound recording quality.

More complex metrics include acoustic entropy, diversity and complexity indices (Sueur 
et al. 2008b, 2014). Current methods for calculating indices often involve partitioning the 
spectrogram into frequency bands (Figure 7b), before calculating measures of complexity 
or diversity that describe spectral and temporal characteristics of the recording (Figure 7c). 
Many can be calculated directly from spectrograms using software such as the seewave and 
soundecology packages in R (Sueur et al. 2008a; Villanueva-Rivera & Pijanowski 2016). 

By reducing the effort and error associated with individual species classification, acoustic 
indices offer potentially powerful tools for rapid analysis of the large datasets collected 
by newer acoustic sensors. However, as discussed in Chapters 4.3 and 7.2.4, the 
relationship between indices and biodiversity is not well understood across study systems. 
Results should therefore be ground-truthed, using either biodiversity data collected by other 
methods (e.g. traditional surveys, camera trapping), and/or community metrics (e.g. species 
richness) estimated from a subset of acoustic data in which vocalising species have been 
identified by an expert listener. Further detail is beyond the scope of these guidelines but see 
(Sueur et al. 2014) for an in-depth review of acoustic indices and their applications.

7.9. Conducting further statistical analyses
It is very likely that you will need to conduct further statistical analyses following 
data collection and processing. In bioacoustics studies this often includes further 
signal processing analyses, such as quantifying and comparing the structure of animal 
vocalisations. For wildlife monitoring it will involve making broader ecological inferences 
from acoustic data. Sounds detected within acoustic data provide a spatially- and 
temporally-explicit record of species detections, which can be used in estimating animal 
density, modelling population trends, or modelling relationships between environmental 
characteristics and species occupancy, activity and/or behaviour.

Further detail on statistical methods in ecology is beyond the scope of this guide, 
however Chapter 4 discusses the breadth of current uses of acoustic data in ecology and 
conservation. Consult the existing literature, including the further reading in Chapter 9, 
 alongside more general literature on statistical modelling with ecological data. Key 
considerations for designing further analyses are discussed in Chapter 7.2. It is vital to 
understand and how the decisions made during data collection and processing may affect 
your results (Reason et al. 2016). Consider carefully the distinct statistical challenges 
presented by the analysis of ecological data, including their distribution; ecological 
data are unlikely to be normally distributed, meaning that appropriate methods must 
be applied for hypothesis testing (Zuur & Ieno 2016). It is at this stage that metadata 
collected alongside acoustic recordings, such as land-use and weather information, are 
likely to be important to include as predictors or covariates in any statistical modelling.
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Most current applications of acoustic monitoring endeavour to 
assess animal population dynamics, behaviour, communities 
and diversity, or the status of species or populations, often in 
relation to human activities

Image: © Wild Wonders of Europe / Nill / naturepl.com
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CURRENT HARDWARE AND SOFTWARE FOR
ACOUSTIC MONITORING
This chapter provides lists of currently available hardware and software for acoustic mon-
itoring, to assist in selection of appropriate tools (for further information on choos-
ing an acoustic sensor, see Chapter 6). Current manufacturers of acoustic sensors 
for ecological and environmental monitoring are listed in Table 5, along with example 
sensor models for each manufacturer. This list is current at time of publishing, however 
new models and manufacturers regularly enter the market.

Examples of both proprietary and open-source software tools for analysis of acoustic
wildlife monitoring data are provided in Table 6; some are general purpose acoustic
software, while others are designed specifically for bioacoustics research. Proprietary
software packages often contain intuitive user interfaces that enable users with less
statistical computing experience to process audio data, and often offer good customer
support; however, they can be costly and the limitations of tools (e.g. sound classifiers)
included within proprietary software are often not clearly reported. In contrast, open-
source analysis tools are freely available, their limitations are often better documented,
and many have very active online communities that may offer assistance with problems.
However, many require greater experience with statistics and computer programming.

Company Summary Species/ habitat Example models and uses Website

ARBIMON / Sieve 
Analytics (Puerto 
Rico)

Hardware, software 
and data analysis tools 
for acoustic biodiversity 
monitoring, including 
a cloud-computing 
platform for data 
storage and analysis.

Terrestrial, 
audible range

ARBIMON Portable Recorders; 
ARBIMON Permanent 
Monitoring Stations (with solar 
panels and ethernet/wi-fi data 
transfer capacity); ARBIMON II 
web-based analysis platform.

www.sieve-analytics.com 
/#!arbimon/cjg9

AudioMoth (UK) Low-cost open-
source environmental 
acoustic sensor, 
which can record both 
audible range and full 
spectrum ultrasound

Terrestrial, 
audible range 
and ultrasonic

AudioMoth sensor details 
discussed in Case Study 3 of 
this report, with further details 
provided at the website.

www openacousticdevices.info

Chelonia (UK) Marine passive acoustic 
monitoring equipment 
for odontocete 
monitoring.

Aquatic, 
odontocetes

C-POD and DeepC-PO, detect 
odontocete echolocation clicks 
and record several call parameters 
(e.g. time, centre frequency, 
duration) for later analysis. Can 
record for 4+ months.

www.chelonia.co.uk

Dodotronic 
(Italy)

Bioacoustic sensor 
manufacturer 
producing a range 
of recorders and 
microphones (ultrasonic 
and audible range) 

Terrestrial, 
ultrasonic and 
audible range

Ultramic, Ultramic384K (ultrasonic 
microphone/recorder);  MOMIMIC 
(miniature microphone electronics 
component); Hydromic (ultrasonic 
hydrophone preamplifier)

www.dodotronic.com

Elekon 
(Switzerland)

Batlogger range of full-
spectrum bat recorders 
and detectors.

Terrestrial, bats Batlogger C and A/A+ (for 
passive monitoring); Batlogger 
M (for transects); Batscanner 
(heterodyne detectors). 
BatExplorer analysis software.

www.batlogger.com/en

Table 5: Bioacoustics sensor manufacturers for both terrestrial and aquatic environments 
(current at time of publishing), including information about key sensor models.

http://www.sieve-analytics.com/#!arbimon/cjg9
http://www.sieve-analytics.com/#!arbimon/cjg9
http://www openacousticdevices.info
http://www.chelonia.co.uk
http://www.dodotronic.com
http://www.batlogger.com/en
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Petterson 
Elektronik 
(Sweden)

Ultrasonic bat detectors 
and analysis softwares, 
with heterodyne, 
frequency-division and 
full-spectrum models.

Terrestrial, bats D230 (frequency division); 
D500X (full-spectrum static 
detector); D1000X (frequency-
division/time expansion). Also 
produce M500-384 ultrasonic 
microphone that can be 
attached to a smartphone.

www.batsound.com

Solo (UK) Open-source, low-cost 
audio recorder built 
around a Raspberry 
Pi microcomputer, 
with customisable 
specifications

Terrestial, 
audible range

Customisable: example 
configuration provided in 
publication is costed at UK£167 
(Whytock & Christie 2016).

solo-system.github.io/home.html

Teledyne Reson 
(Denmark)

Marine acoustic 
monitoring equipment, 
mainly for industrial 
and military purposes, 
but also produce a 
range of hydrophones 
useful for bioacoustic 
research.

Aquatic Various hydrophone models; 
website includes a useful 
hydrophone look-up table.

www.teledyne-reson.com

Titley Scientific 
(UK)

Anabat Systems range 
of bat detectors. Mainly 
use zero-crossing/
frequency-division 
detection, but some 
also include heterodyne 
and full-spectrum/time-
expansion modes.

Terrestrial, bats Anabat SD2 (frequency-
division); Anabat Walkabout 
(zero-crossing/time-expansion/
heterodyne) bat detector; 
Anabat Express (zero-crossing, 
waterproof, static sensor). 
Analook analysis software.

www.titley-scientific.com

Wildlife 
Acoustics (USA)

Wide range of 
bioacoustic recorders, 
microphones, 
hydrophones and 
analysis softwares, 
suitable for a range of 
taxonomic groups and 
habitat deployments.

Terrestrial 
and aquatic, 
all  taxonomic 
groups

Song Meter audible range (e.g. 
SM3, SM4) and full-spectrum 
and zero-crossing ultrasonic (e.g. 
SM3BAT, SM4BAT) recorders 
for terrestrial habitats. Song 
Meter SM3M Deep Water and 
Submersible for marine habitats 
at a range of depths. Analysis 
softwares include Kaleidoscope 
(bats) and Song Scope.

www.wildlifeacoustics.com

Table 5 (cont): Bioacoustics sensor manufacturers for both terrestrial and aquatic environments 
(current at time of publishing), including information about key sensor models.

Frontier Labs 
(Australia)

Recording equipment 
for bioacoustic and 
ecological research.

Terrestrial, 
audible range

Bioacoustic Audio Recorder, 
includes omnidirectional 
microphone, integrated GPS unit 
and sampling rate up to 96kHz. 
Handheld Audio Recorder to 
attach to smartphone.

www.frontierlabs.com.au

High Tech Inc 
(USA)

Hydrophones and 
recording systems for 
marine environments. 
Many models are for 
industrial/military 
uses but also produce 
marine mammal 
hydrophones.

Aquatic HTI’s Marine Mammal 
hydrophone, maximum 
operating depth of >3000m. 
Produce a range of hydrophones 
that can be customised to order.

www.hightechincusa.com

Ocean 
Instruments 
(New Zealand)

Produce self-
contained underwater 
autonomous recorders 
for ocean acoustic 
research.

Aquatic SoundTrap 300 STD and HF 
models can record constantly 
for 13 days and weigh 
approximately 0.5 kg.

www.oceaninstruments.co.nz

Company Summary Species/ habitat Example models and uses Website

http://www.batsound.com
http://solo-system.github.io/home.html
http://www.teledyne-reson.com
http://www.titley-scientific.com
http://www.wildlifeacoustics.com
http://www.frontierlabs.com.au
http://www.hightechincusa.com
http://www.oceaninstruments.co.nz
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Software Availability Summary Website

ARBIMON II Free initially, charges 
apply for larger 
quantities of data

Cloud-computing based bioacoustics storage 
and analysis platform (Aide 2013); features include 
visualising and annotated recordings, soundscape 
analysis and automated call detection via 
pattern matching. 

arbimon.sieve-analytics.com

Audacity Free, open source Intuitive, general-use audio software that enables 
listening, viewing spectrograms, subsetting and 
annotating files.

www.audacityteam.org

AudioTagger Free Free audio software for listening, viewing and 
manually annotating large volumes of audio files. 

github.com/groakat/
AudioTagger

AviSoft Proprietary (AviSoft-
SASLab Pro); free (Lite)

Bioacoustic analysis software, functions include 
visualisation and annotation, automated 
classification tools (spectrogram cross-correlation), 
geo-referencing tools and noise analysis.

www.avisoft.com

BatScope Free Free software for visualising and analysing full-
spectrum bat recordings, including automatic 
species call classifiers.

www.wsl.ch/dienstleistungen/
produkte/software/batscope/
index_EN

iBatsID Free Free software tool for classifying European bat 
call recordings to genus and species (Walters et 
al. 2012); requires call parameters extracted by 
SonoBat (see below).

ibatsid.eu-west-1.
elasticbeanstalk.com

CPOD.exe Free Free software for analysing data collected by 
T-PODs and C-PODs. Reads raw data from the 
C-POD SD cards and detects trains of cetacean clicks 
and classifies into groups (e.g. narrow-band high 
frequency clicks and other cetaceans).

www.chelonia.co.uk/cpod_
downloads.htm

Ishmael Free Specialised bioacoustics software from CIMRS, 
with a marine emphasis. Includes visualisation and 
annotation tools and functions for aquatic sound 
localisation and automated call recognition.

www.bioacoustics.us/ishmael.
html

Kaleidoscope Proprietary 
(Kaleidoscope Pro), 
however spectrogram 
viewer tool is free

Software package by Wildlife Acoustics for 
bioacoustic analysis, including methods to 
visualise and annotate files, tools for cluster 
analysis and classifier training, batch processing, 
and bat call classifiers.

www.wildlifeacoustics.com/pr
oducts/kaleidoscope-software

PAMGUARD Free, open-source Open-source package for bioacoustic research, 
with an emphasis on marine mammals. In addition 
to core acoustic analysis functionality, a variety 
of plugins are available for more complex signal 
processing and analysis, including detection, 
classification and localisation.

www.pamguard.org

Pumilio Free, open-source Open-source application for managing 
bioacoustic recordings, including visualising, 
annotating and manipulating sound files (see 
Villanueva-Rivera et al 2012).

ljvillanueva.github.io/pumilio

Raven Proprietary (Raven Pro); 
free (Raven Lite)

Sound analysis software from Cornell Lab 
of Ornithology, with functions including 
visualisation/annotation, call detection and 
spectrogram correlation.

www.birds.cornell.edu/brp/
raven/RavenOverview.html

Table 6: Software packages and tools for analysis of acoustic recordings, including both 
specialist bioacoustics packages, many of which include detection/classification tools, and 
general use software (current at time of publishing).

http://arbimon.sieve-analytics.com
http://www.audacityteam.org
http://github.com/groakat/AudioTagger
http://github.com/groakat/AudioTagger
http://www.avisoft.com
http://www.wsl.ch/dienstleistungen/ produkte/software/batscope/index_EN
http://www.wsl.ch/dienstleistungen/ produkte/software/batscope/index_EN
http://www.wsl.ch/dienstleistungen/ produkte/software/batscope/index_EN
http://ibatsid.eu-west-1.elasticbeanstalk.com
http://ibatsid.eu-west-1.elasticbeanstalk.com
http://www.chelonia.co.uk/cpod_downloads.htm
http://www.chelonia.co.uk/cpod_downloads.htm
http://www.bioacoustics.us/ishmael.html
http://www.bioacoustics.us/ishmael.html
http://www.wildlifeacoustics.com/pr oducts/kaleidoscope-software
http://www.wildlifeacoustics.com/pr oducts/kaleidoscope-software
http://www.pamguard.org
http://ljvillanueva.github.io/pumilio
http://www.birds.cornell.edu/brp/ raven/RavenOverview.html
http://www.birds.cornell.edu/brp/ raven/RavenOverview.html
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Software Availability Summary Website

Seewave (R 
package) 

Free, open source Package for the open-source statistical 
environment R, providing a range of tools for 
bioacoustic analysis including visualisation, 
annotation and calculating acoustic indices. 

rug.mnhn.fr/seewave

Song Scope Proprietary Software by Wildlife Acoustics for spectrogram 
visualisation, including over long timescales.

www.wildlifeacoustics.com/
products/song-scope-overview

Sonobat Proprietary Software for analysis of full-spectrum bat 
recordings; features include visualisation, call 
detection, parameter extraction and species 
classification. 

www.sonobat.com

SonoChiro Proprietary Software for automated analysis of full-spectrum 
bat recordings, designed for use with large volumes 
of data. Includes automated species classifiers for 
Europe and the Neotropics.

www.biotope.fr/fr/accueil
-innovation/sonochiro

Soundecology (R 
package)

Free, open source Package for R providing functions to calculate 
soundscape indices from spectrograms.

cran.r-project.org/web/
packages/soundecology/index
.html

Tadarida Free Open software and code for developing and applying 
an acoustic classifier.

github.com/YvesBas
(Bas et al. 2017).

WarbleR (R 
package)

Free, open-source Package for R providing a range of functions for 
batch processing of bioacoustic signals, including 
spectrogram visualisation, feature extraction, 
cross-correlation functions and recording quality 
assessment

cran.r-project.org/web/
packages/warbleR/index.html

Table 6 (cont): Software packages and tools for analysis of acoustic recordings, 
including both specialist bioacoustics packages, many of which include detection/
classification tools, and general use software (current at time of publishing).

http://rug.mnhn.fr/seewave
http://www.wildlifeacoustics.com/ products/song-scope-overview
http://www.wildlifeacoustics.com/ products/song-scope-overview
http://www.sonobat.com
http://www.biotope.fr/fr/accueil -innovation/sonochiro
http://www.biotope.fr/fr/accueil -innovation/sonochiro
http://cran.r-project.org/web/packages/soundecology/index .html
http://cran.r-project.org/web/packages/soundecology/index .html
http://cran.r-project.org/web/packages/soundecology/index .html
https://github.com/YvesBas
http://cran.r-project.org/web/packages/warbleR/index.html
http://cran.r-project.org/web/packages/warbleR/index.html


ACOUSTIC MONITORING  65

RECOMMENDED READING
This section contains a concise list of references, from books and the scientific literature, 
that provide useful reviews and guides to further conceptual and methodological 
approaches to acoustic wildlife monitoring. The guidelines in this report are sufficient for 
initial equipment deployment and basic analysis of data. These references provide further 
detail on concepts in the study of bioacoustics and more complex methods in sensor 
deployment, signal processing and acoustic data analysis.
 
Blumstein et al. (2011) Acoustic monitoring in terrestrial environments using microphone arrays: 
applications, technological considerations and prospectus. J. Applied Ecol., 48, 758–767.
 
Bradbury & Vehrenkamp, 1998. Principles of animal communication. US: Sinauer, Massacheusetts.

Chelonia Ltd. Training workshop 2017 www.chelonia.co.uk/training_workshop_2017.htm
 
Darras K et al, 2016. Measuring sound detection spaces for animal acoustic sampling and monitoring. 
Biol. Cons.
 
Digby et al (2013). A practical comparison of manual and autonomous methods for acoustic 
monitoring. Meth. Ecol. Evol.
 
Dudzinkski et al (2011) Trouble-shooting deployment and recovery options for various stationary 
passive acoustic monitoring devices in both shallow- and deep-water applications. J. Acou. Soc. Am.

Harris et al (2016). Ecoacoustic indices as proxies for biodiversity on temperate reefs. Meth. Ecol. Evol.
 
Gillespie et al (2008) PAMGUARD: Semiautomated, open source software for real-time acoustic 
detection and localisation of cetaceans, Proc. Inst. Acou.

Marques et al (2013) Estimating animal population density using passive acoustics. Biol. Reviews.
 
Merchant et al (2015) Measuring acoustic habitats, Meth Evol Ecol.
 
Obrist MK et al (2010) Bioacoustics approaches in biodiversity inventories. In: Eymann et al (eds) 
Manual on Field Recording Techniques and Protocols for All Taxa Biodiversity Inventories. ABC Taxa 
Vol. 8: 68-99.www-3.unipv.it/cibra/ABC_TAXA_BIOACOUSTIC_2010.pdf
 
Pijanowski et al (2011) What is soundscape ecology? An introduction and overview of an emerging 
new science. Landscape Ecol.
 
Roch et al (2016). Management of acoustic metadata for bioacoustics. Ecol. Infomatics.
 
Russ (2013). British Bat Calls: A Guide to Species Identification. Pelagic Publishing
 
Sous-Lima et al (2013). A review and inventory of fixed autonomous recorders for passive acoustic 
monitoring of marine mammals. Aquatic Mammals

Sueur et al, 2014. Acoustic indices for biodiversity assessment and landscape investigation. Acta Acustica. 

Sueur J, 2015. Ecoacoustics: the ecological investigation and interpretation of environmental sound. 
Biosemiotics. 

Van Parijs et al (2009) Management and research applications of real-time and archival passive 
acoustic sensors over varying temporal and spatial scales. Marine Ecol. Prog. Ser.
 
Villanueva-Rivera LJ et al 2011. A primer of acoustic analysis for landscape ecologists. Landscape Ecol.
 
Walters et al (2013) Challenges of using bioacoustics to globally monitor bats. In Adams, Peterson 
(eds), Bat Evolution, Ecology and Conservation: New York, Springer 2013.

http://www.chelonia.co.uk/training_workshop_2017.htm
 http://www-3.unipv.it/cibra/ABC_TAXA_BIOACOUSTIC_2010.pdf
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GLOSSARY OF TERMS
Acoustic index/indices – An acoustic index is a mathematical function calculated 
to describe some aspect of the spectral and temporal diversity or complexity of a sound 
recording. The current variety of acoustic indices are reviewed in (Sueur et al. 2014). 
Indices for the study of acoustic biodiversity were originally conceived as analogous 
to traditional community ecology and biodiversity metrics such as acoustic diversity 
or complexity. They are generally used to summarise global spectral and temporal 
characteristics of sound recordings, in order to study their relationships to biodiversity, 
habitat features and global change (see ecoacoustics).

Acoustic monitoring – In this guide we use the term acoustic monitoring specifically 
to refer to passive acoustic monitoring. This is the use of acoustic sensors to passively 
record sound from the environment, which is then used to infer ecological information 
about vocalising animals or acoustic habitat properties. It is distinct from active acoustic 
monitoring, which involves the detection of sounds from man made acoustic emitters 
(such as on-animal tags).

Acoustic sensor – Any combination of sound recorder, detector, microphone and/
or hydrophone, designed to detect and record sound in the environment. This could be 
an integrated bioacoustic recorder, or a custom combination of these components. Most 
contemporary acoustic sensors record sound digitally (see section 2).

Audible range – Refers to any acoustic signal within the frequency range of human 
hearing, which is typically 20Hz to 20kHz.

Bioacoustics – a discipline of biology concerned with the study of the emission, 
propagation and reception of acoustic signals by animals.

Ecoacoustics – Ecoacoustics is an emerging discipline concerned with the analysis of 
environmental sound recordings for ecological purposes (Sueur & Farina 2015), and is 
closely related to research under the heading of soundscape ecology (Pijanowski et al. 
2011a). It is distinct from bioacoustics due to its focus on ecological communities and 
biodiversity. Acoustic indices are among the major tools used in ecoacoustic research. 
These summarise global spectral and temporal characteristics of sound recordings in 
order to study their relationships to biodiversity, habitat features and global change.

Features (in sound classification) – in sound classification, features are parameters 
extracted from a sound of interest that describe its spectral and temporal characteristics 
(see Figure 5D). These are generally compared to a library of known species calls to 
identify a closest match, either manually or using automated machine learning methods.

Frequency – the frequency of a sound wave is its number of cycles per unit time, 
measured in hertz (Hz; cycles per second) or kilohertz (kHz; thousands of cycles per 
second). The term spectral relates to a sound’s frequency characteristics.

Infrasound (infrasonic) – Refers to any acoustic signal below the frequency range of 
human heating, which is typically below 20Hz. Some animals, including mysticete whales 
and elephants, vocalise at infrasonic frequencies.
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Machine learning – Machine learning methods are a family of computational data 
analysis tools that employ algorithms to learn patterns from, and then make predictions 
on, data. In acoustic analysis they are mainly used for detection and classification of 
signals within sound recordings. In essence, machine learning classifiers compare an 
unknown signal to a learned library of known species calls (call library) and report the 
closest match with a probability of correct classification. They include methods such as 
random forest, Hidden Markov Models, artificial neural networks and support vector 
machines, as well as newer deep learning methods such as convolutional neural networks.

Monitoring – Ecological monitoring involves the repeated collection of ecological data 
over long timescales, usually years to decades, in order to assess changes over time. These 
include trends in species populations and distributions, phenology, and how these are 
impacted by global change processes such as climate change and land-use.

Nyquist frequency – see sampling rate.

Passive acoustic monitoring – the use of passive acoustic sensors to survey and 
monitor wildlife and the acoustic environment (see acoustic monitoring and acoustic sensor).

Sampling rate – the rate at which an incoming sound wave is sampled during the 
process of digital recording, typically measured in kilohertz (kHz; thousands of samples 
per second). The sampling rate determines the ability to accurately resolve frequency 
information from a digitally recorded sound. Sampling rate must be at least twice as 
high as the highest frequency of interest (Nyquist frequency). For audible range sound 
this is typically 44.1kHz, whereas to fully resolve bat and cetacean echolocation calls, full 
spectrum ultrasonic recorders must sample at between 200 and 400kHz.

Signal detection – The process of locating signals of interest within a sound recording. 
This may be manual (done by eye/ear) or automated (using computational tools).

Signal classification – The process of classifying a signal of interest to a particular 
category, for example identifying it to an animal species. This may be carried out manually 
or with automated tools; the latter estimate the probability that a particular classification 
is correct.

Survey – Ecological surveys involve the systematic collection of ecological data about 
a given species, habitat or region, generally over a short time period. These data may 
then be used to estimate factors such as population size and density, species occupancy 
and distribution and habitat associations. Surveys are distinct from monitoring, which 
involves carrying out surveys over multiple years in order to assess ecological trends. In 
the context of this report, a survey refers to short-term ecological data collection carried 
out using acoustic sensors.

Spectral – Relating to the frequency of a sound (see frequency).

Ultrasound (ultrasonic) – Refers to any acoustic signal above the frequency range of 
human hearing, which is typically above 20kHz. In order to detect ultrasound, specialised 
recorders or detectors are needed that record at sufficiently high sampling rates (if 
recording in full-spectrum), or convert a signal into audible range sound (e.g. time 
expansion detectors).
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A spectrogram of recording of bat bats and birds, with time 
on the x-axis, frequency on the y-axis, and amplitude (power) 
shown as colour intensity. The calls are visible as bright yellow 
markings against a black background.


