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EXPLORING GEOSPATIAL APPROACHES TO GAIN IMPROVED ‘BIODIVERSITY’ INSIGHT FOR 
FINANCIAL SECTOR APPLICATIONS AND THE PRESSING NEED TO CATALYZE EFFORTS
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Disclaimer:
This work is a product of the staff of WWF with external contributions. The 
opinions expressed in this publication are those of the authors. They do not 
profess to reflect the opinions or views of WWF. The contents employed in this 
publication and the presentation of material therein do not imply the expression of 
any opinion whatsoever on the part of WWF or any of the authors concerning the 
ESG performance of any assets, companies or nations, or any delineation. WWF 
does not guarantee the accuracy of the data included in this work.

As a technical contributor, Maxar has provided information about remote 
sensing products and technologies and how they can be applied to help 
monitor biodiversity-related issues, particularly as it relates to business activity. 
This whitepaper represents the opinions of the authors and is the product 
of professional research.  The opinions expressed in this publication do not 
represent the opinions or positions of Maxar or its affiliates. The information 
shared in this whitepaper is not all-encompassing or comprehensive and is 
provided solely for information purposes, and it does not in any way intend to 
create or put into effect any elements of any binding commitment. The use of 
Maxar’s name and/or product names or trademarks herein does not imply any 
affiliation with, or endorsement by, Maxar.

No photographs in this publication may be reproduced without prior authorization.

Copy Edit: Chris Cartwright

CONTENTSCOVER IMAGE: Maxar GeoEye-1 satellite image showing flamingos, 
Lake Nakuru National Park, Kenya, on June 14, 2010.
Satellite image © 2022 Maxar Technologies.

Maxar WorldView-2 satellite image showing The Great Barrier Reef, Australia, 
on April 22, 2013. Satellite image © 2022 Maxar Technologies.

http://wwf.org.uk
http://www.maxar.com
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Asset A physical entity owned by a parent company either directly, partially or via its subsidiaries. 
These assets can be non-static, moveable (e.g. an oil rig, or aircraft). Assets do not include the 
production assets of a company (e.g. the production cars of a car manufacturer) but only those 
assets used within the company’s operations to enable production. 

Asset Data
(Asset Dataset/s)

Geospatially definable data which at a minimum defines the location (X, Y) coordinates and 
ownership of a given set of assets. Frequently, asset datasets are sector specific and contain 
additional attributes tracking variables relevant to the specific asset class. More robust asset 
datasets track more attributes and use polygons to accurately geolocate assets and property 
extent. 

Note: Asset datasets are both openly and commercially available, with six or seven sectors 
currently well documented in commercial offerings. No widely adopted standard exists for 
these datasets.  

Baseline An estimate of the prior status of ecosystem condition or biodiversity for a given time and area.

Biodiversity Biodiversity is the variability among living organisms within species, between species and 
between ecosystems. Biodiversity underpins the proper functioning of ecosystems.

A more complete definition of biodiversity is from the United Nations Convention on 
Biodiversity (CBD): ‘The variability among living organisms from all sources, including, inter 
alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which 
they are part; this includes diversity within species, between species and of ecosystems’ 
(CBD, 1992).

Company 
(Company-Level, Parent Company)

Refers to the legal entity which owns or controls the majority interest of other entities, such as 
subsidiaries and assets.   

Cumulative Impact/s Impact/s, both direct and indirect, that interact, aggregating to cause further impact to 
ecosystem condition. 

TNFD, 2022 use the following definition: ‘A change in the state of nature (direct or indirect) that 
occurs due to the interaction of activities of different actors operating in a landscape’

Direct Impact/s
(Destructive Impact/s)

Impact/s that permanently (5 years+) destroy habitat. 

TNFD, 2022 uses the following definition: ‘a change in the state of nature caused by a business 
activity with a direct causal link.’

Note: Due to the challenges and potential legal implications involved in proving a causal link 
between a business activity and impact to the natural world, within this document we assign 
impact via the IBLG (Internal, Bordering, Landscape, Global) approach, which does not consider 
the causation link but rather impact/s (reported values) within set spatial delineations. 

Ecosystem A dynamic complex of plant, animal and microorganism communities and the non-living 
environment, interacting as a functional unit (CBD, 1992).

Ecosystem Asset/s A form of environmental asset that relates to diverse ecosystems. These are contiguous 
spaces of a specific ecosystem type characterised by a distinct set of biotic and abiotic 
components and their interactions (UN, 2021).   

Ecosystem Condition 
(Ecosystem Integrity / Ecosystem Health)

The quality of an ecosystem as measured by its abiotic and biotic characteristics. Condition is 
assessed by an ecosystem’s composition, structure and function which, in turn, underpins the 
ecological integrity of the ecosystem and supports its capacity to supply ecosystem services 
on an ongoing basis (TNFD, 2022, Adapted from: UN, 2021).

Environmental Asset/s The naturally occurring living and non-living components of the Earth, together constituting the 
biophysical environment, which may provide benefits to humanity (UN, 2021).   

Ex-situ Data Solution Nature-related data solutions that do not require any field collected data (in-situ data) but rely 
almost fully on external data sourced remotely or from existing secondary data sources (e.g. 
satellites, models).

GLOSSARY1 
First-Generation Biodiversity Solutions An approximate term used to refer to any current data solution, tool, platform, etc. (2022 and 

prior) used for nature-related insight. These tools, platforms and approaches can broadly be 
considered the first generation, the initial developments in the space.

Second-Generation Biodiversity Solutions Still to emerge (post 2023) second generation solutions achieve improved nature-related 
insight at the asset level, most probably through increased access to more robust 
observational and asset data, and improved standards and data infrastructure. 

Geospatial ESG The use of geospatial data to generate ESG-relevant insights into a specific commercial asset, 
company, portfolio or geographic area (WWF; World Bank; Global Canopy (2022). 

Habitat The area, characterized by its abiotic and biotic properties, that is habitable by a particular 
species (Keith, D et al., 2020). 

IBLG Impacts 
(Internal/Bordering / 
Landscape/Global Impact/s)

A spatial division of nature-related insights into results within the property, internal (I), 
bordering (B) the property (≤ 1km from the property), within the landscape (L) (1–1000km from 
the property or to a stated jurisdiction, e.g. a water basin) and globally (G) (≥ 1,000 km from the 
property – such as GHG emissions). 
 
Developed by WWF’s Conservation Intelligence (CI) team and used within this document to 
consistently and without bias delineate and assign direct and indirect cumulative impact/s to 
an asset without the need to prove or imply causation.  

Impact/s An attribute event, either natural or human-made, that adversely alters the status of an 
ecosystem’s condition.

TNFD, 2022 uses the following definition: ‘Changes in the state of nature, which may result in 
changes to the capacity of nature to provide social and economic functions. Impacts can be 
positive or negative. They can be the result of an organisation’s or another party’s actions and 
can be direct, indirect or cumulative.’  

Indirect Impact/s
(Reductive Impact/s)

Impact/s that without significant habitat destruction damage, degrade or undermine in some 
way the ecosystem condition, either for a given area or ubiquitously (e.g. GHG emissions 
causing global climate change).

TNFD, 2022 uses a different definition, not applied here due to issues around proving 
causation: ‘A change in the state of nature caused by a business activity with an indirect 
causal link (e.g. a change indirectly caused by climate change, to which an organisation’s 
greenhouse gas emissions contributed).’

In-situ Data 

In-situ Solutions 

Nature-related data, or other data, collected from the field, within or near (≤1 km) to the 
assessed variable (e.g. species monitoring, water samples, smart meters, etc).   

Nature-related data solutions that fully or partially rely on primary or secondary data collection 
from the field, within or near (≤1 Km) to the assessed variable (e.g. species monitoring, water 
samples, smart meters, etc).   

Metric/s Results, or data, providing a form of measurement.

Nature The natural world, with an emphasis on the diversity of living organisms (including people) and 
their interactions between themselves and with their environment (Díaz, S et al., 2015). 

Observational Data/sets Geospatially defined data, used to provide insights. Within this document we focus on 
observational data which, combined with asset data and other data points, can be used 
to generate metrics to support insights into biodiversity and ecosystem impact. However, 
a broad range of observational data can be applied and fused with other data types for 
additional insights into other topics.   

Portfolio 
(Portfolio-Level)

A collection of parent companies, and their respective share within a group, forming the 
‘portfolio’ typically held by portfolio managers. 
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To address the interlinked climate and biodiversity challenges, the financial sector needs data 
accurately defining the historic and ongoing biodiversity impacts of any given asset, company, 
portfolio, etc. week on week, relative to its peers – to enable meaningful differentiation.

Due to the technical difficulty in providing ‘true’ ecosystem and biodiversity impact without 
‘in-situ’ (ground-collected) data, current first-generation geospatial ‘biodiversity’ tools and 
platforms have effectively evaded the challenge by providing alternative proxy insights – 
insights which do not actually define the immediate and cascading impacts of a given asset 
on the surrounding ecosystem condition and the health and trends of the immediate and wider 
biodiversity over time. The challenge now, considering the likely 3–5-year time lag in collecting 
and aggregating in-situ data at a global scale for ESG applications, is to find robust methods 
with ex-situ data alone. Considering the global scale of the application, this essentially leaves 
one existing data option: satellite remote sensing data.
  
Within this document we explore the topic holistically, looking at how improved ‘ecosystem 
and biodiversity’ insights can be gained, and could be consistently produced, for every 
commercial asset on Earth, with geospatially driven ex-situ data approaches. This data 
can then be blended with other ESG data points for individual project finance or summed 
to parent, portfolio or area (e.g. state, nation). Proposed methods are presented within 
the context of the wider policy and technical realities, showing that such insights are 
unlikely to organically scale without developing the necessary supporting public good 
data infrastructure to allow the flow and integration of data types across a diverse 
range of stakeholders. 

The report makes several key methodological contributions and, recognizing that data and 
models will evolve, outlines various data-agnostic concepts for discussion. 

1. ‘Geospatial Asset Screening’ should adhere to an agreed standard – To remain 
systematic in structure across products and to help remove the complexities around 
‘causation’ (e.g. proving that a specific commercial asset caused a particular environmental 
impact), we propose using fixed area delineations – specifically, defining the values reported 
for any given observation dataset or model within the internal property of any given asset 
(I); the bordering area near to the asset, based either on a ratio or fixed distance/s (B); 
within the landscape (L) (e.g. within the water basin); and globally (G) – the IBLG model. 
Importantly, we propose methods for developing landscape condition metrics (L) to adjust 
the impact of values reported within IB values to the wider landscape situation. 

2. Impact should be simplified and measured directly – We divide ‘impact’ of any given 
asset within its IBLG spheres into direct (habitat clearance) and indirect (all other impacts 
than direct habitat clearance). This simplifies the equation to its absolute, to prioritize and 
separate habitat loss, aligning to the ex-situ data realities, where habitat clearance is often 
easily detected via Satellite Remote Sensing (SRS) approaches. 

3. Methods for the quantification of ‘biodiversity’ impact needs to be agreed – here we 
suggest that until the science and the aggregation of in-situ data into the equation improves, 
the most readily practical approach is to apply peer-to-peer percentile comparison: simply 
comparing assets to one another, adjusted for relevant additional factors (e.g. production 
volume, ecoregion, biomass, landscape condition, etc.). However, this, approach is only 
possible for those sectors having robust asset databases with global coverage. 

Recognizing that the entire emerging field of geospatial ESG, and indeed many related fields, 
will remain constrained until the wider realities are factored, we suggest that there needs to be 
a stepwise change in the collection, maintenance and sharing of asset, supply chain and 
observational data. To overcome the current constraints in a feasible manner, we propose the 
development of an international ‘centre’ to oversee the creation and maintenance of a public 
goods data commons, best practice, benchmarking, etc., to enable the flow and integration of 
data across the diverse range of stakeholders from satellite to spreadsheet. 

EXECUTIVE SUMMARY

© Emmanuel Rondeau / WWF France
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INTRODUCTION 
Addressing the biodiversity crisis and climate change will shape our ability to provision the 
fundamentals for society, such as fresh water and sustainable food production.
 

PURPOSE AND SCOPE OF PAPER:

BOX 1 – WHAT IS IN A NAME? GEOSPATIAL ESG OR SPATIAL INTELLIGENCE?
The emerging field of applying geospatially derived insight within finance for ESG-relevant 
insight is sometimes referred to as ‘Spatial Intelligence’,3 ‘Geospatial ESG’,4 etc., and through 
data triangulation overlaps with other related fields such as ‘Open-Source Intelligence (OSINT)’ 
(See Page 53). Here we refer to the emerging field as ‘Geospatial ESG’, to place focus on the 
idea that this approach is specifically designed to provide insight into ESG, rather than for 
wider financial applications, such as predicting soft commodity prices. Although we have 
no opinion on or preference for any specific term, it seems probable that a single term will 
organically evolve for the field.  
 

To factor climate and biodiversity into decisions, the financial sector needs access to accurate insight 
into the impact of 95%+ of companies (or at least a significant majority of companies to ensure wide 
transparency and accountability), at suitable scales for all its varying applications. Over the last 
two decades, important gains have been made to aid financial actors in understanding the climate 
change implications of their decisions (although much work remains to be done); in contrast, however, 
biodiversity remains poorly understood and difficult for the sector to reconcile.  

Within this paper we aim to catalyse discussion around practical ways forward to resolve the 
‘biodiversity data puzzle’ and provide the data insight required for the financial sector.

This paper focuses on defining the impact of commercial operations on terrestrial biodiversity, via 
a geospatially driven approach. While we recognize that many are interested in exploring impact in 
marine environments or exploring other biodiversity-related topics – such as dependency on nature, 
ecosystem services, nature-based solutions, transition, regulatory risks and opportunities – these 
are outside the of scope of this paper. However, granular insight into biodiversity impact is often a 
preliminary insight required for exploring other biodiversity-focused topics. Critically, the technical 
solution proposed is data- and model-agonistic, designed to freely enable third party development, 
potentially across these other topics.  

We deliberately make no attempt to align to any standard (e.g. SBTN, TNFD, ESRS)2; rather, we seek 
to define the best possible data solution for gaining accurate and meaningful insight into impact on 
biodiversity and ecosystems. Fortunately, there is significant organic alignment emerging, with most 
standards, such as TNFD, recognizing the location specificity of biodiversity and the consequent 
need to apply a geospatial approach. Furthermore, the approach outlined within this document 
can be adapted to standards and arranged to follow existing or future frameworks or classification 
schemes (e.g. ENCORE), if required. 

While much can be done today with existing data and approaches to define biodiversity and 
ecosystem impact at project to sovereign scales, a significant revolution is required to move from 
current isolated one-off insight to having analysis-ready data embedded into existing financial 
systems reporting week-on-week the biodiversity and ecosystem impact for 95%+ of listed 
companies, including supply chain impacts.  

This major step change will require a diverse range of actors to collaborate in building standards and 
the data infrastructure that will allow ongoing collaboration on data and methods to iteratively test and 
benchmark data solutions. Fortunately, this does not require novel technology; indeed, existing and 
ongoing developments in data capture, compute and machine learning are well positioned to support 
the increasing diversity of highly motivated actors keen to solve the biodiversity puzzle. Instead, the 
challenge will rest on how quickly and effectively collaboration can be achieved. 

This document is then a call to action, raising concepts for discussion as to how collectively 
we might rapidly revolutionize ‘biodiversity’ impact insight – and help factor the externalities 
of these impacts into the financial system. 

As different sides of the same coin, the two issues are mutually reinforcing. Simply put, rising 
temperatures will exacerbate biodiversity loss, releasing more greenhouse gases, creating 
a negative feedback loop. This will inevitably aggravate a wide range of societal issues, 
from civil conflict to resource competition, in turn causing more biodiversity and climate 
impacts. Conversely, improved ecosystem condition and biodiversity is likely to help store 
and sequester carbon, support water and food security, and provide greater resilience to aid 
society in weathering the ongoing storm of climate change impacts. 

The climate and biodiversity challenges are vast. Yet, every action taken within the biosphere – 
oceans, air, land and soil – matters. Our actions, no matter how small, are linked and may have 
cumulative negative or positive impacts on the Earth’s systems.

EVERY ACTION THEN MATTERS. 
Due to the scale of these challenges, effective solutions require consistent action from global 
society, where humanity must pull together in the same direction, making the right decisions 
time and time again, over decades. Otherwise, the actions of one group, or the actions of 
tomorrow, will undo the progress of today. 

WE NEED UNITED ACTION AT A GLOBAL SCALE, 
DELIVERED CONSISTENTLY OVER THE LONG HAUL. 
If there was no time limit – if we had all day, as it were – humanity would almost certainly move 
towards sustainability over decades. Unfortunately, we are under time pressure – with less than 
a decade to oversee a major reduction in emissions and a U-turn on our approach to planetary 
biosphere management. Solutions need to be found fast and rolled out immediately. 

WE NEED PRACTICAL SOLUTIONS OPERATIONAL 
WITHIN A SHORT TIMEFRAME (24 MONTHS). 
As the engine behind our global civilization, the financial sector has enabled scientific 
progression, massive increases in quality of life and many of the comforts we take for granted. 
It also plays the leading role in where and how we impact the natural world through the 
allocation of capital. How well humanity meets the biodiversity and climate challenges will be 
massively influenced by the response of the financial sector. 
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RECOMMENDED 
ACTIONS
We suggest the following key actions, to radically improve 
biodiversity insight at the scale required. 
 

JOIN THE CONVERSATION
To push forward the concepts outlined in this document, 
WWF will shortly launch a ‘Geospatial ESG Consortium’. We 
welcome financial institutions, conservation actors, tech, earth 
observation, remote sensing, ESG providers, etc. interested in 
the emerging field to join us. 

CREATE A ‘BIODIVERSITY DATA COMMONS’
We need to move away from siloed, standalone platforms to 
a ‘platform of platforms’ federated approach which enables 
improved data access and interoperability of asset and supply 
chain data, and observational data – integrating into the 
financial sector’s data ecosystem.

Action – A ‘data commons’ needs to be established to 
enable actors to share critical asset and observational data, 
models or approaches – openly, securely or behind an FI’s 
firewall – with robust standards. This needs to radically 
improve access to critical asset and supply chain data to 
enable assessment and, critically, the building, sharing and 
iteration of models and methods. 
 
CHANGE CORPORATE DATA DISCLOSURE / ACCESS
Every asset on Earth needs to be geolocated, and accessible 
in either open or proprietary datasets (within the data 
commons). Ownership must be accurately maintained, and 
ideally asset datasets should be sector specific, capturing 
wider attributes and defining the property boundaries. 

•	 Action – An ‘asset registry’ is needed within the data 
commons, uniting via a federated approach, ongoing open 
data disclosure and regulation initiatives. While placing 
the primary burden of generating and maintaining asset 
datasets and company trees onto the corporates.

•	 Action – Develop means to enable the sharing of supply 
chain data between a corporate and FI securely within the 
data commons.  

DEVELOP AND REFINE OBSERVATIONAL DATA
Clarity needs to be created around biodiversity and ecosystem observational data, defining robust 
metrics. Metrics need to be tested and openly reviewed as to their ability to detect the variable under 
measurement.  

•	 Action – The ‘biodiversity’ community should: 

 - Align to existing efforts such as GEO BON and GBIF; provide support and iterative    
 guidance as to which observational datasets, and the metrics derived     
 therefrom, are scientifically robust and how they might be improved. 

•	 Action – The Satellite Remote Sensing (SRS) communities should:

 - Align to existing efforts, and collectively identify spatial or temporal gaps and any    
 possible means of improvement of the observational data portfolio, either via more    
 regular higher-resolution data gathering or alterative solutions.

 - Explore with the wider community novel approaches, such as data triangulation, or the   
 testing of specific novel metrics. 

DEVELOP AND REFINE METHODS AND MODELS
As an emerging field, the core methods of geospatial ESG for biodiversity and ecosystem insight 
remain fluid. Critically, areas such as the framework, area delineations, global baselines and 
models determining topics such as, indirect impacts or landscape condition, need to be collectively 
worked through.

•	 Action – Researchers (perhaps via structured working groups) need to provide clarity on the 
optimal methods and approaches. Results should be peer reviewed and published when possible.   

CREATE STANDARDS
Across all this work – ranging from basic arrangements for asset datasets to data security protocols – 
soft, technical standards need to be developed. 

•	 Action – Open-source standards need to be rapidly deployed to aid developments – a large 
resource of existing technical standards exists which could be adopted. 

ALIGN WITH CLIMATE
Many of the data needs of the ‘biodiversity’ space directly align with the needs of the climate space 
and wider ESG needs. Almost all ESG efforts, for example, would benefit from improved access 
to financial data, asset data and supply chain data. While eventually, since climate and nature are 
interlinked issues, the two will need to be considered together, as and when the data science allows.

•	 Action – Engage with ‘climate data actors’ early on, when developing data commons, frameworks, 
metrics, standards, etc., to identify opportunities for alignment.  

CREATE A ‘CENTRE’ TASKED WITH DELIVERING THE INCLUSION OF CLIMATE AND NATURE 
GEOSPATIAL INSIGHTS INTO THE FINANCIAL SYSTEM
Ultimately if no-one is made responsible for the above, it is likely that progress will stagnate, with 
commercial actors unable to resolve the public good aspects of the equation. To ensure the work is 
delivered, an independent international research centre needs to be established – connected with 
existing efforts but tasked and resourced to ensure the delivery of SRS data, methods, models and 
public data utilities to aid localized, regional biodiversity and ecosystem insight and interlinked social 
and climate issues. 

•	 Action – The government/s which take the initiative on the establishment of such a centre or 
federated model will place themselves at the heart of the next revolution: the inclusion, via the 
full weight of the SRS sector’s power, of environmental and climate externalities into the 
financial system.  

Maxar WorldView-2 satellite image showing Pearl Hermes Atoll, 
on September 15, 2011. Satellite image © 2022 Maxar Technologies.
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KEY POINTS
• The financial sector is not interested in ‘biodiversity’ – the 

variability among living organisms and ecosystems – per se 
but in defining the impact of specific commercial assets on 
changing (±) biodiversity. 

• To define biodiversity trends, it is necessary to look 
at change within the context of ecosystem condition. 
Ecosystems can be simplistically thought of as complex 
machines, like mechanical watches, where all the parts – 
species – function together and cannot function apart. They 
are perfectly balanced to optimize the energy within that 
system while still being able to respond to and recover from 
external shocks and disturbances.  

• Ecosystems face a vast range of potential impacts, from 
localized humanity-driven issues (e.g. habitat clearance, 
pollution, etc.), through natural issues (e.g. volcanoes, 
earthquakes, flooding) to overarching global issues (e.g. 
climate change), all potentially reducing their ability to 
function and maintain biodiversity. 

• Due to impacts cascading through ecosystems, one 
damaged ‘cog’ can damage other components: removing 
1 km2 of a 100 km2 rainforest or 1 out of every 100 species 
does not necessarily merely translate to a 1% biodiversity 
loss; over time, if a critical component, it could negatively 
alter the ecology and biodiversity of the entire forest (100%). 

• Traditional ecology, conservation science – in-situ field 
research – offers the best insight into how human activities 
impact specific ecosystems. These field studies take 
significant time and resources. 

• It is often challenging to translate field research into generic 
ex-situ models and rules for ESG insight, where thousands of 
models would be required to cover the multitude of possible 
impacts for each ecosystem, each sufficiently unique with 
specific localized ecology. Confusing matters, often several 
impacts occur on ecosystems at the same time. This variety 
and complexity makes defining biodiversity and ecosystem 
impacts and the extent of cascading and cumulative damage 
extremely difficult to capture with only ex-situ data. 

PART 1 
BIODIVERSITY AND IMPACT

© Day’s Edge Productions / WWF-US



WWF / MAXAR / THE BIODIVERSITY DATA PUZZLE  15

OVERVIEW
The term ‘biodiversity’5 has risen within the financial sector to become the byword for discussing any 
issue related to the natural world. In a similar way that ‘climate’ has become synonymous with describing 
any issues related to human-driven climate change.  

In almost all cases, the financial sector is interested in changes to biodiversity, where the focus is on 
trying to define the impact (±ve) of a commercial entity (e.g. asset, corporation, portfolio, nation) on the 
natural world. 

In short, Financial Institutions (FIs) need to know, What is the nature-related impact of X? 6

Before we can begin to answer that question, we need first to be clear on what biodiversity is, what 
ecosystems are and how we might best measure impact on the natural world. 

WHAT IS BIODIVERSITY?
In essence, ‘biodiversity’ relates to the green bit – the stuff that rustles, bites and squeaks. The bit we 
have a tough day trudging through on our latest misguided outdoor adventure. It is the wealth of ‘nature’ – 
a concept we all know intuitively. For discussions within financial applications, this loose definition, often 
understood as the number of animals and plants present, is enough.7 

What is important to know is how ‘biodiversity’ works; from that we will be better positioned in trying to 
look at how we might measure impact to it.

Figure 1 – An ecosystem can be 
thought of as a little like a mechanical 
watch, where all the species, like 
cogs in a watch, fit and move 
together as a single unit. And where 
one change to a species, one cog, 
cascades through the system. 

BIODIVERSITY AND ECOSYSTEMS
For financial applications, we are rarely primarily interested in the number and 
diversity of species present in an area, the actual ‘biodiversity’ of a site. Instead, 
we are interested in the health of those species, their trends – are they stable, 
going up or going down? How much damage, or recovery, is occurring? And 
how much of that change can be assigned to a specific commercial asset? 

For that we need to look at the ecosystems.8 

An ecosystem is a group of species which survive together. Salt marshes, coral 
reefs, mangroves, grasslands, rainforests and cloud forests are all types of 
ecosystems. Different ecosystems can occur within other wider ecosystems, 
such as a stream within a woodland. 

Each ecosystem is like a perfectly functioning mechanical watch, each with 
thousands of parts – tiny springs and cogs – all fitting and working perfectly 
together (Figure 1). Each species is a cog within that system, each with a 
defined role to play, which often cannot be replicated as well by another 
species. Each is highly efficient at its role.    

© ZOLTAN TASI, UNSPLASH
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Understanding where, how and to what extent commercial actors are damaging the natural world 
is then a priority, and without measurement, accountability will remain elusive. To begin to assign 
impact, here we simplify impacts to ecosystems into two groups: i) direct impacts,13 the loss 
of habitat within a given area, and ii) indirect impacts, impacts that, without significant habitat 
destruction, damage, degrade or undermine in some way the ecosystem condition, either for a 
given area or ubiquitously (e.g. GHG emissions causing global climate change).  

Direct impacts are simple to understand, destroying part, or all, of an ecosystem, (e.g. clear 
felling the forest). Indirect impacts, partial damage to ecosystems, are often far more subtle but 
sometimes just as impactful. Indirect impacts come in many forms; some examples are as follows: 

• We can damage a single part of ecosystem, one cog, or a small group of parts. We can 
remove one species (e.g. rhino poaching) or isolate one population from another. We can 
cause damage to one species, one part, which can cascade through the system casing 
havoc, or be absorbed and recovered from. 

• We can also do the unexpected, such as introduce new parts into the watch. Introducing 
new species, known as invasive species, can cause all kinds of unpredictable problems and 
become a ‘green cancer’. Imagine jamming a new spring or cog into a watch; what would it 
do? It’s unlikely to make it work better, and this is the case with the natural world: new species 
introduced by humans across the earth have caused havoc – the extinction of native species 
and the breakdown of native ecosystems, which have cost billions of dollars. Two species 
alone, the American bullfrog and brown tree snake, are thought to have collectively caused 
$16.3bn in global damage since 1986.14 

• We can fragment and divide ecosystems, like pulling the teeth of cogs just a little bit too far 
from another to function. Fragmented ecosystems can create areas of habitat too small to 
support the species present. 

• We can pollute natural spaces, with light, noise or chemicals, killing or injuring species, causing 
birth defects and lowering species breeding success. 

• We can also cause indirect impact in overarching ways by globally changing the medium 
in which the ecosystem operates (e.g. changing the temperature or the ocean’s salinity). 
Ecosystems respond to these global changes by slowly shifting location over decades and 
centuries, moving altitude or latitude to a more suitable climate. However, if the pace of change 
is too fast or there is no space for the ecosystem to move to a more suitable medium, it will be 
lost. Such overarching pressures are also highly likely to weaken its resiliency to other threats.  

Complicating the understanding of ecosystem impact is the fact that because each ecosystem 
is unique – its own unique ecological design and physical situation – it has its own unique 
vulnerabilities, which can change over time (e.g. seasonality). On top of this, impacts often 
combine and may grind away for decades before becoming apparent. Indeed, situations arise 
where environmental assets can be in what is known as ‘extinction debt’. Somewhere within 
the ecosystem, a function has broken (e.g. seed dispersal of a key tree species), and without 
conservation intervention, over time (potentially hundreds of years), it will slowly degrade from 
high to low diversity. 

Ecosystems then can be damaged in a variety of ways – but the extent of any given impact can 
be hard to predict. Just as with a watch, direct and indirect impacts can cascade through the 
system. Happen to damage the wrong cog, the wrong keystone species, pull the wrong cogs 
apart, introduce parts, and the whole system can break down; at other times, the ecosystem 
absorbs the damage and almost nothing happens. 

Damage to ecosystems and biodiversity then is not a linear percentage. Removing 1 
km2 of a 100 km2 rainforest, or removing 1 species out of 100 within that block, does not 
translate to 1% loss of the rainforest’s biodiversity. It might, in time, recover and equal 0% 
or cascade in impact. If that block of habitat happens to be an important cog for keystone 
species, a breeding area or a food or water resource, this could potentially over time cause 
changes to the ecology and species present, across the whole forest. 

Over millions of years of evolution, the collection of species that make up an ecosystem have 
evolved together to maximize, as efficiently as possible, the energy within that system – with 
checks and balances to ensure stability. Designed to function in a particular medium (i.e. within 
a set range of temperature, rainfall, salinity, etc.), they are machines of breathtaking perfection. 
Inefficient species, like a chipped cog, are likely to evolve or be replaced, and in doing so often 
have knock-on effects – effectively subtly redesigning the whole system over time: changing 
the arrangement of other cogs, in turn altering other species. If the ecosystem itself naturally 
becomes too inefficient, or the medium around it changes too extensively, it is likely to collapse 
or be overtaken. 

Human-altered areas of nature, such as golf courses, farmland or gardens, can contain 
significant amounts of biodiversity. They are, however, unlikely to be optimal or well-performing 
‘ecosystems’, but more often will be a chaotic mess of species, maintained in stasis by our 
design, where without human intervention, the habitat would eventually revert to the ‘original’ 
ecosystem. Any species introduced from outside the original arrangement (e.g. garden plants 
imported from overseas) would most likely over the long term either become invasive, altering 
the original ecosystem, or die out, unable to support themselves.

Ecosystems, like a watch, are a single unit. Just as you cannot have half a fully functional 
watch, you cannot have half a fully functional ecosystem. Species, then, survive together 
in stable fluctuation, as a unit, where their survival – and the ecosystem’s ability to provide 
humans with essential goods and services – is entirely bound to the integrity and condition of 
the ecosystem/s they exist within.9

It is this ecosystem condition, and changes to it, which we will need to understand if we 
are going to be able to answer the question, “What is the nature-related impact of X?”10 

IMPACTING ECOSYSTEMS AND BIODIVERSITY 
Although ecosystems are often highly resilient, there are many ways to damage their functions. 
For example, shifting them from high diversity of species to simpler, poorer assemblages will 
limit their ability to function and provide wider ecosystem services.  

A huge grassland once reached from France to Alaska across Siberia. Despite the colder 
climate than today, the ecosystem was more productive, supporting woolly mammoths, bison, 
musk ox, woolly rhino and giant elk. It is thought that this is because the large mammals 
recycled critical phosphorus and nitrogen. Through grazing they kept plant matter from 
being locked away in a frozen peat layer and in reach of the plants and creating a productive 
landscape. When the larger mammals went extinct, the decaying plant matter built up, creating 
an increasingly acidic peat layer, the nutrients cycle became clogged and the plants became 
poorer in nutrition. Today’s tundra, despite being warmer, is less productive, unable to support 
such large assembles of large mammals. Sadly, such phase shifts from high to low diversity 
and productivity are not just interesting insights from the past; they’re happening today, at 
increasing frequency. Perhaps the most iconic is the ongoing fate of coral reefs. 

It is critical to understand that not only can we impact ecosystems, but we can damage 
them beyond a point of no return – resulting in ecosystems of permanently lower 
productivity. Indeed, the situation is so extreme that human-driven species losses are pushing 
close to the precipice of the sixth mass extinction, where species loss over the last century is 
100 times higher than the background rate11 and from which there can be no rapid recovery. 
We know from the fossil record that after major extinction events, the natural rebalancing and 
recovery of these ecosystems (and the benefits and stability they provide) is likely to take at 
least five million years,12 a timescale which is meaningless to humanity.
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Figure 2 – From Rogers-Bennett et al., 2019; photos showing the ecosystem shifts observed for kelp forest 
canopy (top), subcanopy (middle) and benthose (bottom), pre-impact (a–c) and post-impact (d–f). Photo credit: 
CDFW (K. Joe (a,c,e); L. Rogers-Bennett (b); C. Catton (d,f)). 
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BOX 2 – ECOSYSTEMS OR BIODIVERSITY?

Throughout this document we use the terms ‘ecosystem’ and ‘biodiversity’ to describe impact to the 
natural world. Why both? Why is it not biodiversity OR ecosystem impact?  

The condition of ecosystems defines their ability to function, to maintain processes and structure, which 
defines the survivability of biodiversity with them. As we look to develop simple metrics for financial 
application, it is vital that we prioritize insight into impacts reducing ecosystem condition, as this better 
captures the holistic impact of an asset.    

Common metrics designed around prioritizing ‘biodiversity’, such as endangered species density, often fail 
to capture wider changes to ecosystem condition. We can define the endangered species likely to be within a 
given area, but that doesn’t necessarily tell us about the wider status of the ecosystem/s. For example, there 
are many small islands around the world filled with endemic species; the species present, due to being found 
only on that island, have naturally small populations, or ranges which qualify the species as being listed as 
rare or endangered, creating a high density of ‘endangered’ species. And yet in some cases, the health of 
those ecosystems and species may be robust (e.g. the Galapagos) – it is just that they happen to be sites with 
extreme endemism15. 

Yet of course an understanding of the biodiversity present within an ecosystem is important as it provides 
context for the relative conservation and genetic values of a specific site.  

Consequently throughout this document we refer to both, ‘ecosystem and biodiversity’, acknowledging that 
we must first understand ecosystem condition while framing those insights within an understanding of the 
biodiversity present. 

To manage expectations, it is difficult to define ecosystem condition with ex-situ data alone, and impossible 
to gain robust insight into all the hyper-detailed components of biodiversity change within a given site without 
in-situ data. The practical reality is that global scale ESG insights will be limited to high-level overviews of 
landscape condition and averaged proxy metrics for ‘biodiversity’. However, as we’ll show, this is perhaps the 
right level of detail to begin to identify across millions of assets those with higher (concerning) nature-related 
exposure and impact. 

HOW MUCH DAMAGE CAN WE REALLY DO?
Earlier we discussed indirect impacts, noting that the removal of just one species can cause damage to 
the ecosystem. Often it is difficult for people to understand the true extent of damage one minor change 
can bring, so we provide an example. Sea otters (Enhydra lutris) were once widespread; as a result of 
being hunted for their fur in the 1700s and 1800s, their numbers plummeted. In the North Pacific, otter 
absence led to an explosion in their prey, sea urchins, which overgrazed the kelp forests, reducing them 
to what is known as urchin barrens – areas of far lower species assemblages (Figure 2).16,17

With the collapse of the kelp forests came the loss of the biodiversity and the ecosystem services 
provided – such as food provision, dampening of wave propagation and mitigating associated impacts 
such as coastal erosion, sedimentation, etc. Now research is showing that the massive calcareous reefs 
built by algae over thousands of years within the kelp forests are now rapidly eroding due to massive 
overgrazing by sea urchins, at rates worsened by climate change impacts.18 

Sadly, collapse brings with it not only significant biodiversity loss but often severe long-term socio-
economic consequences. The Aral Sea in Central Asia was once the world’s fourth largest inland lake, a 
significant fishery and agricultural region. Water division and overextraction led to declining water levels 
and more concentrated pollution within the lake (Figure 3). Fish stocks collapsed, as did the ability to 
support agriculture in the region. Economic ruin followed, and the mass migration of the local population 
away from the once thriving region. Today, dust storms generated from the dried lakebed sediments laced 
with pollutants pose a public health hazard and further degrade the surrounding soils (Figure 4). 
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The story of the Aral Sea is sadly iconic, and often it’s all too easy to dismiss the issue as Soviet era 
mismanagement, something which couldn’t happen again. Unfortunately, as we move into the climate 
change era, tolerances for ecosystem mismanagement will decrease – and the likelihood for major 
ecosystem collapse increases dramatically.  

As an example, the Great Salt Lake of Utah, the largest saltwater lake in the Western hemisphere, is an 
important site for over ten million migratory birds – it is a regionally relevant ecosystem. It also helps 
support the region’s economy, generating millions of dollars from tourism and mineral extraction. 

It is enduring a 22-year-long drought, and water levels have now dropped to the lowest level recorded, 
exposing 2,000 km2 of lakebed (Figure 5).21

Figure 5 – Satellite images showing the 2,000 km2 loss of Utah’s Great Salt Lake from 1985 to 2022. Image left composite of summer 
acquisitions from Landsat 5 satellite; image right the Copernicus Sentinel-2 mission on July 4, 2022.22

As the water level decreases, the concentration of pollutants (heavy metal pollutants left over from mining 
activity in the region) increases, as does the water’s salinity. This stresses, and can kill, the shrimps 
and invertebrates which the migratory birds feed on. It exposes a larger area of lakebed, creating more 
fine dust pollution – which, mixed with heavy metal pollutants, poses a risk to public health, causing or 
worsening respiratory illnesses. 

While the lake goes through seasonal cycles of water loss, replenishing after the snow melt, and will 
increase in volume later in the year, if extraction and evaporation continue to exceed the amount of water 
entering the lake year on year, issues are going to escalate until the ecosystem collapses.

There is the temptation to think that the collapse of these far-off ecosystems mean little to my world or 
business. And indeed, one cut isn’t a problem – but they add up. For example, in 2016, 40 million (76 km2) 
of mangrove trees died in Australia due to exceptional low sea level caused by El Nina,23 making it one 
of the worse mass tree diebacks and releasing nearly a million tons of carbon into the atmosphere. The 
mangroves have not since recovered, aggregating climate change impacts and damaging a commercial 
fishery. Unhelpful, but arguably still distant; but how many dieback events, coral bleaching events, 
invasive species, wildfires and overextraction of ground water can there be until widescale ecosystem 
collapse is a problem for Australia’s economy and society, and then globally?  

Sadly, the issue of ecosystem collapse is not isolated but present across the globe, where decline in 
biodiversity is unravelling ecosystems’ abilities to function. Indeed, in 2020, Swiss Re reported that for a fifth 
(20%) of all countries, ecosystems are in a fragile state – with over 30% of their land mass compromised.24 

Undoubtedly then, we are capable of and are actively destroying and crippling ecosystems – and 
with them, their functions that support economies and humanity.    

Figure 3 – Nine MODIS images showing the extent of the Aral Sea from 2000 to 2013.19

Figure 4 – A satellite image taken March 24, 2020, showing how the Aral Sea, once a giant body of water, 
is now a source of pollutant-laced dust, an ongoing public health hazard and continuing to degrade the 
fertility of soils in the surrounding area.20
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Figure 6 – Satellite image of 
Chalillo Dam, Belize showing 
the extent for the immediate 
area flooded.

The Chalillo Dam, whether a positive for national energy security and renewable 
energy generation, remains a controversial project, with disputes and issues ongoing 
since its construction.32 

Irrefutability it caused significant biodiversity loss, a loss well beyond the immediate area 
flooded, probably changing the breeding success of key species within the immediate forest, 
changing the wider forest ecology and changing much of the freshwater biodiversity along 
the entire length of the Macal River – an impact which is almost certainly being felt, along the 
length of the river, the forest and within local communities today (Figure 7). To truly begin to 
know would take sustained long-term in-situ field research. 

Figure 7 – Map showing the 
full length of the Macal River, 
arguably all impacted by the 
Chalillo Dam, Belize. 

CAN WE MEASURE BIODIVERSITY AND ECOSYSTEM CONDITION?
For decades, understanding biodiversity and ecosystem 
condition at scale (national and global) has been a priority 
for governments, NGOs, IGOs and other practitioners, 
where, understandably, actors have been keen to find 
inexpensive and practical means to generate information to 
inform areas for prioritizing action, monitoring performance 
and aiding decision making. 

Broadly speaking, the world of defining biodiversity and 
ecosystem condition can be divided into two categories, 
those which use detailed field data collection in-situ, and 
ex-situ approaches which do not. For our application, 

where we need insight at a global scale across millions of 
assets, solutions must primarily be ex-situ, as field data 
collection is impractical.25 

There are, of course, an established literature, methods and 
science for conducting in-situ environmental assessments 
studies at the project level, corporate biodiversity guidelines, 
etc. Here, however, we focus on the overarching conceptual 
challenges of determining in-situ impact from a conservation 
science perspective – to aid insight into the difficulties of 
defining ex-situ impact. 

IN-SITU 
The BDFFP provides an example of how much effort and 
time it takes to understand one impact – forest fragmentation 
– in one ecosystem. And yet the learnings cannot easily be 
transferred to other sites. Each forest, each ecosystem, is of 
its own design, and consequently, responses will vary, even 
between areas within the Amazon. Of course, robust field 
studies on the specific implications of a specific development 
(e.g. road, dam, agricultural expansion) on a specific 
ecosystem, such as the BDFFP, can be simplistically translated 
and integrated as proxy guides into ex-situ assessments, 
giving generic rules, such as the extent of edge effects (e.g. 
100m bordering impact), within a given forest type. 

Unfortunately, long-term studies, such as the BDFFP, from 
which to develop ‘generic rules’ are not widely available. This 
is because there are hundreds of potential combinations of 
ecosystems and impacts, many of which have not been well 
studied. Those which have, like the BDFFP, require significant 
expertise, time and resource to extract their learnings for ex-
situ geospatial insights. 

Let’s consider a real-world example: the Chalillo Dam was first 
proposed in the 1990s in the Central America tropical forests 
of Belize (Figure 6). After Duke Energy moved away from the 
project, the Canadian company Fortis developed the dam with 
Chinese participation in 2002.28 

The dam is based on the Macal River, in the Maya 
Mountains.29 The valley was one of the last blocks of pristine 
riverine habitat in Central America. Detailed field studies prior 
to construction, commissioned by Fortis for the EIA, were 
conducted over four months led by a biologist from London’s 
Natural History Museum. 30 The team documented, via in-
situ field study, that the area was ‘a rare and discrete floral 
floodplain habitat which acts as both a conduit and critical 
habitat for resident and non-resident fauna and avifauna’. 
Tapirs (a large herbivore) used the river as a critical food cache 
during the dry season. Neotropical migrant birds used it as a 
waystation. The predicted biodiversity impacts of the dam on 
the valley and river were documented as ‘major, long-term and 
regional in extent,’ 31 arguably fracturing the Mesoamerican 
Wildlife Corridor.

Unravelling the extent of damage caused by any one asset 
(e.g. a factory, a palm oil plantation, a road), is highly site-
specific and often extremely complex – often requiring 
months, if not years, of intensive field studies to first define 
the status of the original ecosystem and the species present, 
and then unpick the consequences of the impact.  

This is because each ecosystem is unique, with unique 
physicality and species arrangement. Consequently, the 
specific location of impact is a determining factor, where 
even within the same ecosystem a slightly different location 
of impact can result in vastly differing outcomes. The time of 
year can also change the significance of the same impact (e.g. 
breeding season). On top of this, each impact is unique. No 
two oil spills, road developments or wildfires are the same. 
Complicating matters is the fact that rarely is an ecosystem 
impacted by a single impact. Commonly ecosystems face 
multiple impacts simultaneously (e.g. drought, habitat 
fragmentation, invasive species, selective hunting pressures, 
water pollution, light pollution, climate change, etc.). 

For example, the Biological Dynamics of Forest Fragments 
Project (BDFFP) has run since 1979, looking at the impact 
of forest fragmentation in the Brazilian Amazon rainforest, 
assessing 11 sites of different-sized forest blocks (1–100 
hectares).26 By monitoring physical and ecological changes 
in the blocks after their fragmentation, researchers showed 
certain species became locally extinct in the smaller 
blocks, evidencing how edge effects27 changed the forest 
microclimate, carbon storage, tree mortality and ecology 
(the species interactions). They were able to show that not all 
fragmentation has equal impact, varying in intensity according 
to edge age, number of edges, adjoining vegetation, etc. 
and hence showing how changes to land management of 
bordering habitat often creates markedly different outcomes. 

The BDFFP uncovered many specifics as to how ecosystem 
structure and biodiversity within varying sized blocks of 
forest changed, when divided. It took years of detailed study, 
measuring the water content in leaves and the humidity 
on transects, assessing vegetation plots, and monitoring 
changes in species composition and diversity – over decades. 
Animals and trees can live long lives, so any impacts can take 
decades to play out, requiring long-term study to document 
how the composition of a forest has changed. 
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operating within the bounds of natural or historic disturbance 
regimes’.44 One example was developed by NatureServe 
and used to develop ecosystem-specific ecological integrity 
insight for wetlands and temperate forests. It is a mostly ex-
situ approach that combines both biotic and abiotic values to 
provide insight into the ‘integrity’ of an ecosystem.45,46 

As well as developing and defining new metrics and 
approaches, where for example Group on Earth Observations 
Biodiversity Observation Network (GEO BON) has been 
working to develop a set of twenty Essential Biodiversity 
Variables,47 other approaches, designed from a different but 
related perspective, have looked at the question from the 
data collection standpoint. Specifically, a paper by Hasse 
et al.48 has looked at merging two global initiatives, the 
International Long-Term Ecological Research (ILTER) network 
and the GEO BON working towards harmonizing frameworks 
and integrating individual monitoring initiatives centred on 
ecosystems – to provide insight at scale. This development, 
aggregating and amassing in-situ data (and others, 
such as Resolve and GBIF), is of interest as in-situ data 
aggregated at scale are highly valuable for refining and 
improving ex-situ data and approaches but it also serves 
as a recommendation as to what variables need to be 
captured for holistic insight (Figure 8). 

EX-SITU 

Figure 8 – Table from Hasse et al.49 suggesting recommended variables, measurements and 
instrumentation for terrestrial, freshwater and coastal environmental monitoring sites considering the 
ecosystem integrity (EI) and essential biodiversity variables (EBV) framework; note that while some are 
possible with ex-situ measurement or proxies many are not possible with ex-situ measurement.

The critical point is that significant research exists and 
that there are significant ex-situ data challenges in 
characterizing landscape condition. Of course, significant 
further development is required to refine and improve these 
approaches (metric correlation to ecological condition, 
quantifying relationships and transferability of metrics, 
etc.). That said, the geospatial ESG use case is arguably 
significantly less technically demanding than conservation 
applications, where we are attempting a high-level screening 
rather than the design and prioritization of conservation 
interventions. Current methods, or even simplified 
adaptations, are hence likely to be capable of providing useful 
insight for geospatial ESG applications. And as more data 
become available (via more satellites in orbit, aggregated in-
situ data efforts, etc.) and more research is directed into this 
area and application, we can expect improved insight.

Fortunately, within the geospatial ESG approach 
discussed in this document, no decision needs to be 
made as to what components (abiotic or biotic or both) or 
aspects (unique species or ecological systems) need to 
be prioritized. As a data- and model-agonistic approach, 
any one or multiple approaches can be applied. New 
data or models can be added or older ones replaced or 
updated, allowing the user or a machine rationalization 
to make determinations as to what set of data or model is 
appropriate for a specific geospatial ESG application. 

The next section goes into detail on the current data 
landscape and what approaches currently drive Financial 
Institutions’ understanding of nature-related impact. 

The Chalillo Dam serves to provide a rough sketch of the 
difficulty, even with in-situ data, in defining and quantifying 
the actual direct and indirect ecosystem and biodiversity 
impact of a commercial asset across all scales (locally, 
regionally, etc.). 

From the ex-situ data perspective, it is more challenging 
still. Generalized rules cannot easily be applied, say taking 
the learning from BDFFP, to the Chalillo Dam, as they are 
sites with different species, different ecology and different 
impacts (flooding vs. fragmentation). Then there is the 
issue of biodiversity and ecosystem specificity – could an 
ex-situ solution have the necessary specificity to capture 
these hyper-localized indirect impacts, such as removing 
or damaging Tapir seasonal food caches? Or be able to 
define and assign the extent of the impact on migrating 
birds which pass through the region? And how could that 
be quantified to provide an overall comparable insight into 
the impact of Chalillo? 

The importance of ecologically intact sites for conservation 
goals has long been recognized, and being able to identify 
and determine trends without the need for expensive 
and time-consuming surveys of species presence and 
abundance has long been an objective in the field. As a 
result, a large body of research, spanning decades and 
across disciplines, has arisen – attempting to provide ex-
situ solutions into topics such as ‘ecosystem condition 
or integrity’. This world is complex, with overlapping 
terminology and methods. Approaches are varied; 
solutions range from generalized global scale insight, target 
conservation action,33 defining intact habitat34,35 
or anthropogenic impact36,37 to multi-metric site 
assessment models38,39.

Essentially, for our purposes here, it is enough to know that 
there are myriad approaches, some requiring the partial 
use of in-situ data. Different approaches have arisen in part 
due to different needs, but also because of disagreement 
on where emphasis should be placed – on different 
components (e.g. abiotic40 and/or biotic), differing aspects 
(or combinations) of diversity (i.e. unique species, biotic 
communities, ecological systems, or geophysical) or on 
different functions, such as importance of the geophysical 
environment41 rather than emphasizing the maintenance 
of ecological functions. It is important to reflect that while 
conservationists will agree that ecosystem condition/
integrity is essential for the protection of the natural world, 
the complexity of the concept42 has made defining the 
measurement difficult – and as of yet there is no consensus 
on a preferred approach for any specific application (e.g. 
conservation planning). 

Perhaps one area of potential value for geospatial ESG 
applications, although not without its critics,43 is the concept 
of the ecological integrity assessment, defined as ‘an 
assessment of the structure, composition and function of 
an ecosystem, as compared to reference ecosystems 

E1 components 
and basic 
indicators

Recommended variables / observations Recommended site-based instrumentation 
and measurement

EBV classes to be 
informed
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Habitats Habitat / land cover Habitat mapping, remote sensing

Ecosystem 
structure

Soils
Soil moisture content /temperature

Measurement beyond the point scale, 
e.g., cosmic ray probes, wireless sensor 
network,e.g., Time Domain Reflectometry 
probes

Soil texture, bulk density, pH, Corg
Soil inventory / basic mapping of soil physical 
and chemical properties

Water Water quality: water temperature, pH, electrical 
conductivity Standard water quality probes

Air Air temperature, barometric pressure, incoming 
short-wave radiation, wind speed / direction, 
precipitation, humidity

Standard climate station

Bi
ot

ic
 d

iv
er

si
ty

Fauna

Abundance of 
identity

... of birds Point counts / transects

Genetic 
composition, 
species 
populations, 
community 
composition

... of butterflies Transect counts

...of bees Combined flight traps

... of ground beetles Pitfall traps

... of benthic invertebrates Multi-habitat- sampling

Species richness in soil eDNA (environmental DNA; species detection)

Terrestrial species diversity
Automated multi-sensor station for monitoring 
terrestrial species diversity (AMMOD); 
identification based on DNA metabarcoding

Flora Abundance of vascular plants Vegetation survey during the phenologically 
most appropriate time

Within 
Habitat 
structure

Vertical forest structure (stand height; tree 
height, tree diameter) Standard forest inventory / remote sensing Ecosystem 

structure

Energy budget

Concentration of CO2, water vapour, albedo/
radiation budget, soil heat flux, climate 
variables.

Eddy-flux covariance station

Ecosystem 
function

Leaf area (Index, LAI) LAI optical sensor

Primary productivity (biomass above ground) Light Detecting And Ranging (LiDAR); use of 
data from forest inventory

Transpiration SAP-Flow-measurement

Matter budget

Wet / dry / bulk atmospheric deposition Deposition samples

Discharge surface water; spectral absorption 
coefficient; DOC; nutrients Optical sensors;multi-parameter probes

Soil water chemistry Soil water samplers and analysis

Water budget

Hydrological discharge; discharge, water 
temperature, pH, electrical conductivity

Standard gauging station including 
measurements of basic physical variables

Groundwater; level, temperature, specific 
conductivity Groundwater station

Throughfall and stemflow Throughfall samplers, stemflow collectors

Snow depth Optical sensors
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KEY POINTS
• Biodiversity is increasingly important to the financial sector. 

It is interlinked with the climate crisis and needs to be 
factored into financial decision making.

• Financial Institutions are increasingly interested in 
understanding their ‘biodiversity exposure’. Currently 
most of their insight comes from data produced by the 
corporates themselves in the form of annual reporting. 
Additional insight is frequently achieved through third-party 
data, such as geospatial and web-scraping insight, and 
standalone geospatial or footprinting tools. 

• Due to the challenges involved (hyper-specificity, site and 
impact uniqueness and cascading impacts), it has proven 
difficult to develop scalable ex-situ data solutions that can 
generate sufficient specificity and precision to provide 
informative results that be used to effectivity align capital 
away from biodiversity impact.

 - A major reason for a lack of objective, consistent,   
 comparable, pre-processed results defining ecosystem   
 and biodiversity impact is due to the ex-situ data   
 challenges in capturing and estimating impact for   
 unique assets and their activities (e.g. gold mine) in   
 unique ecosystems with unique vulnerabilities which   
 may shift and change due to seasonality and wider   
 landscape or global impacts (e.g. climate change). 

 - In addition, there is a universal lack of access to robust   
 asset and supply chain data to enable insight.    
 Such supply chain data, commonly unavailable, is vital   
 to  understanding a higher tier company’s impact   
 (for example, the vast majority of an electronic chip   
 manufacturer’s impact will be in its supply chain). 

• Nature-related insights remain difficult to achieve within 
the limits of the data available. Consequently, it may prove 
more effective and productive to simply improve the 
quality and extent of asset and supply chain data available, 
rather than attempt to find ever more complex means to 
circumnavigate data limitations for marginal gains. 

PART 2 
CURRENT APPROACHES TO 
MEASURING ‘BIODIVERSITY’

© VDOS Global / WWF-Canada



WWF / MAXAR / THE BIODIVERSITY DATA PUZZLE  29

CURRENT APPROACHES TO MEASURING ‘BIODIVERSITY’
Financial institutions are increasingly interested in the topic of ‘biodiversity’, where both risks 
and opportunities may be present. A recent Robeco survey of roughly 300 large investors 
(representing approximately USD 23.7 trillion) found that two years ago, only 19% of investors 
considered biodiversity a significant factor in their investment approach, doubling to 41% today 
and expected to increase to 56% in two years’ time.50 This was commonly motivated (52%) by 
commitment to reducing the long-term global societal risks associated with biodiversity loss. 

This perhaps comes as no surprise – the topic has long been rising on the agenda. At the 
regulatory level, France published Article 29 in 2021 requiring all FIs to disclose biodiversity- 
and climate-related risks.51 In the EU, amongst a raft of new legislation, the the Sustainable 
Finance Disclosure Regulation (SFDR) requires companies to disclose activities that negatively 
affect biodiversity-sensitive sites. The Corporate Sustainability Reporting Directive (CSRD)52 
and the European Sustainability Reporting Standard (ESRS)53 will require companies with 
significant operations within the EU to disclose specific metrics on the impact their activities 
have on biodiversity and their dependencies on nature. 

To help meet the growing demand, a range of data approaches – some highly specialized, 
others more generic – have risen within ESG and related fields, designed to give full or partial 
insight into the ‘environmental’ or ‘biodiversity’ implications of project, company or portfolio. 
Almost all commercial and open ESG data approaches are not limited to ‘biodiversity’ but 
consider and often interlink wider related variables, covering bordering topics such as climate 
change, natural disaster risks, water risk, etc.
 
These data approaches are:

Corporate reporting
Frequently the mainstay of the ‘E’ pillar in ESG. Commercial ESG providers source the annual 
sustainability and ESG reports and other literature produced by companies themselves, 
aggregating this unstructured data into consistent formats and provide analysis and clear 
standardized scores to facilitate peer-to-peer comparison.

Surveying
Some actors interview companies to gain ESG-relevant insights, often through a structured 
questionnaire. Normally these are conducted annually; CDP, for example, reviews six questions 
on biodiversity topics.54 

Unstructured Content
Specialized data providers web-scrape media articles from the internet, often applying 
machine learning to identify positive and negative news stories about projects and companies. 
Often reviewing tens of thousands of articles a day in multiple languages, they combine these 
data points with other ESG data points to provide ‘E’ scores for thousands of companies.

Geospatially driven
Using a location point, either exact or regional, these assess company operations against 
observational data to provide insight into possible environmental implications (e.g. 
deforestation). To date, the approach tends to be designed around screening for project 
finance, often without pre-packaged asset data, requiring the user to upload and compile 
their own asset data and assessment. Examples include Global Forest Watch Pro,55 
Ecometrica,56 Maphubs57 and Integrated Biodiversity Assessment Tool (IBAT)58. Others, such 
as Asset Resolution,59 Verisk Maplecroft60 and Reprisk61, contain asset data and can in some 
cases provide insight at asset, corporate and sector levels. Major business intelligence (BI) 
providers are also increasingly integrating geospatially derived assessments, to explore 
nature-related topics.

Hybrid approaches
Increasingly data providers are blending the above data approaches, and additional methods 
not described, to gain improved insight. 
 
Alongside these data products, a range of standalone biodiversity measurement platforms 
and data tools have emerged to support the private sector in running their own biodiversity 
impact and dependency assessments. These tools are often designed around corporate use 
for internal assessment but can be applied by financial institutions for additional biodiversity 
performance insights into corporates or portfolios.

Biodiversity measurement tools
A vast and growing range of standalone tools and platforms, some in part drawing from 
geospatial datasets, have arisen to help corporates assessing the biodiversity impact or 
dependency of their operations. There is a wide universe, from life cycle assessment tools 
to localized sector specific tools. Here we focus on those more applicable to global-scale 
financial application. These tools often require user inputted data (e.g. sales per segment, 
total revenue, emissions, sector/s, location; often to model production/consumption using 
input/output tables) and combine it with additional external data. They are mostly used at the 
product, project, supply chain and, to a small extent, corporate level. Examples include: 

• Biodiversity Footprint Financial Institutions (BFFI)

• Product Biodiversity Footprint (PBF)

• Species Threat Abatement and Restoration metric (STAR)

• Biodiversity Net Gain Calculator (BNGC)

• Biological Diversity Protocol (BDP)

• Corporate Biodiversity Footprint (CBF)

• Global Biodiversity Score for Financial Institutions (GBSFI)

• Global Biodiversity Score for Companies (GBS) 

• Exploring Natural Capital Opportunities, Risks and Exposure (ENCORE)

 
These tools commonly incorporate a footprint modelling component that converts publicly 
disclosed revenue figures into production volumes as a starting point to scale biodiversity 
impact. To achieve this, they classify the various activities of a company (e.g. GICS, NACE, 
FactSet’s Hierarchy). These are then combined with other open-source or custom methods 
(e.g. EXIOBASE, ReCiPe/Life-Cycle Assessment) to translate production and resource usage 
into a range of environmental pressure metrics, such as land-use change, CO2 and CH4 
emissions, and freshwater pollution. These are then often converted again into biodiversity 
impact metrics, such as Mean Species Abundance (MSA) via an open-source model, such as 
the Global Biodiversity Model for Policy Support (GLOBIO), or Potentially Disappeared Fraction 
of Species (PDF) via the ReCiPe model.62
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CONSIDERING THE CURRENT DATA LANDSCAPE 
A useful starting point from which to consider the biodiversity data puzzle is to look at the current ESG 
data landscape. It is timely to stress here how similar the ‘climate’ and ‘biodiversity’ data spaces are, 
using the climate data ecosystem as outlined by Climate Arc (Figure 9).63 
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Figure 9 – Simplified version of the climate data ecosystem from Climate Arc, 2022. 

Figure 10 – Simplified adaption of Climate Arc data landscape, adding ‘biodiversity’ 
components, to illustrate how most data used for nature-related insight used by FIs 
flows from the corporates themselves via annual ESG reporting in public and grey 
literature, through ESG data providers, into the FIs. However, some FIs make major 
efforts to also use third party data and tools and internal systems to triangulate results.

Supply 
chain data

Third-party 
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(Web scrapped 
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While of course the ‘biodiversity’ space does not use national inventories or transition performance and 
has a wider range of standalone data tools outside of the mainstream ESG space – the major flow of 
data from corporates themselves into commercial data aggregators is similar in structure.

Within the ‘biodiversity’ data ecosystem, a significant volume of the data comes from the corporates 
themselves in the form of documents (e.g. annual sustainability reports). ESG data providers ingest, 
aggregate, clean and analyse these publicly released documents to provide insight. In many cases 
they combine this data with additional third-party data, such as web-scraped news insights. Unlike 
the climate data space, the biodiversity space does not have a dedicated actor, such as CDP, tasked 
with systematically collecting biodiversity impacts insight (although CDP does collect some data on 
biodiversity64). 

There are four key points about this current data flow: 
1. The ‘biodiversity data ecosystem’ aligns to the ‘climate data ecosystem’ with no significant change in 

structure.

2. The core of ‘E’ in ESG data used by FIs comes from commercial ESG providers – who base their results 
upon annual reporting and surveying which have a low cadence, updated once per year. 

3. Additional data, such as geospatial and web-scraping insight, is often used to complement the 
aggregated annual reporting within commercial ESG solutions to provide higher-cadence insights. 
However, such data points are often – from an ecosystem impact perspective – inconsistent in 
capturing impact (e.g. heavily biased towards sectors with asset data, or those impacts which happen 
to be reported in the media).  

4. Additionally, FIs, often independently of commercial ESG solutions, source additional, often targeted, 
insight via standalone geospatial asset screening platforms and biodiversity footprinting tools. 
These tools tend to be used for niche applications and are typically not integrated with or across the 
mainstream ESG-provisioned data. These solutions often are unable to provide insight for a large 
percentage of companies, lacking the necessary asset data, or are simply designed for individual 
company assessment.

In the final section of this document, we will reflect again on this data ecosystem. 

CONSIDERING COMMERCIAL GEOSPATIAL ESG DEVELOPMENTS 
Perhaps galvanized by TNFD65,66and ESRS67, both of which have increasingly promoted the need for 
locating companies’ operations for ‘biodiversity’ insight, MSCI,68 Moody’s69 and others have released 
short articles on the topic. As an example of some of the issues these current approaches take, let’s 
look at MSCI. 

It is important to state that any limitations identified or inferred in MSCI’s approach are primarily 
the result of simply not enough robust data being available – and are ubiquitous issues present 
across open and commercial ESG solutions and not unique to MSCI. 

MSCI’s geospatial approach for biodiversity insights used the Mean Species Abundance (MSA) metric 
for 2015, from the Global Biodiversity Model for Policy Support (GLOBIO), as a proxy for local biodiversity 
intactness. 

They state that, ‘Biodiversity-sensitive areas are intact ecosystems with minimal species loss that are 
important areas for conservation efforts and are more sensitive to biodiversity-loss impacts.’ They go on 
to state, ‘…an asset in an area with an MSA value over the global average of 0.56 is considered to be in a 
location that is more sensitive to adverse impact.’70

They found that 4,603 assets were located in a sensitive area, defined as an area with a score above 0.56 
(0–1), the global area weighted mean for 2015 (Figure 11 on teh following page). 

If we add the ‘biodiversity’ components (Figure 10), we see an essentially unchanged landscape. 

Corporate 
data
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Figure 11 – Map from MSCI 
effectively showing the 
overlap between MSCI’s 
asset location data and 
Mean Species Abundance 
(MSA), indicating the local 
biodiversity intactness, 
derived from GLOBIO data as 
of 6th April 2022.71

Mean Species Abundance (MSA) 
>=0.56

0.92

0.56

Percentage of assets in biodiversity sensitive areas

Electric Utilities (11%)

Independent Power & Renewable Electricity Producers (9%)
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Multi Utilities (6%)

Paper & Forest Products (6%)

The challenge here is that while the GLOBIO model is an 
excellent, highly scientifically robust model, on a specific 
asset-by-asset screening, the extent of human activity, or 
anthropogenic pressure, within an area, is not necessarily 
related to that specific asset’s actual ecosystem or 
biodiversity impact, nor even its risk of impact. Naturally, 
it is highly undesirable for any remaining large areas of 
wilderness to be fragmented or developed. However, it 
creates the potential that results will be misinterpreted, that 
areas with higher scores, are ‘more’ sensitive to adverse 
impact and are the only areas sensitive to impact. 

A site which is surrounded by development with very low 
intactness can still be of extreme biodiversity importance. 
The Brazilian Atlantic Forest, of which only 11% of the 
original range remains, is heavily fragmented, (240,000 
blocks, average size 64 ha).72 It is the last outpost for 
tens of thousands of species. The far larger neighbouring 
Amazon Forest of higher intactness (~68% remaining, 
80,000 fragments, average size 8,376ha)73 is arguably ‘less’ 
sensitive to impacts since the Atlantic Forest is already 
under arguably higher pressure, and further impacts are 
likely to have larger ramifications for the survival of that 
ecosystem and the species present than an equal area 
in the Amazon. Of course, commercial activity in either 
forest is highly undesirable – but the point is that on an 
individual asset level, operating within sites of a lower level 
of ‘intactness’ isn’t necessarily preferable, particularly if the 
ecosystem of higher intactness occupies and extremely 
large area and has extremely low biodiversity richness.  

The second and far more pressing issue is that MSCI’s 
approach, and indeed many first-generation ‘nature-related’ 
approaches, is that it uses proximity to ‘biodiversity’ as a 
simple way to infer impact or risk of impact. Unfortunately, 
as correlation does not imply causation, proximity does 
not imply impact. Simply being near to the forest is not 
indicative that the asset is causing an impact. Likewise, being 
located far away from nature does not guarantee less impact. 
Commercial operations can and have polluted waterways that 
have destroyed biodiversity hundreds of miles downstream. 
The acid rain caused by emissions emitted from UK factories 
pre-1988 legislation travelled hundreds of kilometres across 
the ocean to harm the forests and waterways of Scandinavia. 
Such an approach risks biasing impact heavily on those 
industries which, by the nature of their operations (e.g. 
farming, mining) more frequently rurally located.

In an attempt to get around this issue, many approaches 
apply weighted industry scores, giving higher scores to those 
industries and processes with known higher potential for 
environmental impact/s. However, as we seek to determine 
peer-to-peer performance, this is potentially unhelpful. For 
example, all mines, or even of one type – say all open pit 
gold mines – are not equally well managed or operated; exist 
across sites with differing resilience with differing level of 
biodiversity present; hence, their biodiversity impacts are 
unique and specific. What matters for financial application 
is understanding the ecosystem and biodiversity 
impact for each asset individually – within the property, 
bordering the property, regionally and globally (with 
GHG emissions) – across both their primary assets and 
suppliers’ assets. This is what is required to enable the 
accurate differentiation between peers. 

Maxar WorldView-2 color infrared satellite image of Hyderabad, India, highlights healthy vegetation in red. 
Image collected on May 12, 2014. Satellite image © 2022 Maxar Technologies.
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REFLECTIONS ON CURRENT CHALLENGES 
Despite the ever-growing complexity in ‘biodiversity’ data products, a major gap remains 
– objective, consistent, comparable, pre-processed results, defining the ecosystem and 
biodiversity impact for 95%+ of companies including their supply chains. 

A simple way of demonstrating the extent of the issue is to ask which solution can currently 
satisfactorily answer the hypothetical question, Which has a greater ecosystem and 
biodiversity impact, BMW or Mercedes?74 

Which tool, platform or data product currently provides ready-to-go results, without user 
inputted data – a detailed, regularly updated (weekly) insight into the granular nature-related 
impacts of these companies, or any major company, including supply chain impacts? 

Unfortunately, it’s very difficult, and here’s why:

• Biodiversity is highly site-specific. As a result, highly granular data on ecosystem and 
biodiversity and the company operations are required in some form to understand their 
interaction and trends over long time frames (10 years +). Such nature-related data is often 
lacking or difficult to gain access to, and while the methods applied to estimate (direct and 
indirect) impacts to ecosystem condition are developing, they remain inconsistently applied.

• ‘Commercial’ impacts are extremely varied in themselves and vary in severity depending on 
ecosystem condition. Assessment methods need to be tailored to each activity and each 
site sensitivity, to be able to identify and accurately assign impact. 

 - Footprint-based/modelled approaches tend to be unable to capture such specificity –  
 applying sector averages and hence providing generic insight into ‘potential’ impact,  
 rather than insight into specific real-world impact.

• Impacts can cascade through ecosystems and are often technically difficult to 
capture and unravel.

• Impacts frequently interact with one another within a given landscape, where multiple 
companies will be operating. Unravelling responsibly for a given impact is often 
extremely difficult. 

• To address issues surrounding the tragedy of the commons – where each actor does a 
small amount of damage, but collectively over time the damage aggerates (cumulative 
impacts) within the ecosystem – additional landscape and jurisdictional data are 
required for context.  

• Impacts are constantly occurring: small-scale marine oil spills occur every day; small blocks 
of habitat are destroyed each day. Data with high cadence is required to both capture 
impacts which have a short exposure time (e.g. methane pollution) and support timely insight.  

• Asset data defining the location of company operations is often unavailable, making it 
difficult, sometime impossible, to run geospatial driven assessments.  

• Data defining supply chains (and their location) is often not disclosed – a data shortfall 
that has proven difficult to fill even with efforts by commercial data providers. Since 
the biodiversity impact of high tier industries is often almost entirely within their supply 
chains, their inclusion is vital.  

• From a geospatial data solution perspective, current limitations on availability of 
observational data creates bias and error within current data solutions – where, for example, 
a lack of data drives ‘temporal false negatives’ (See Page 48). 

• Lacking robust data encourages the uptake of proxy indicators, such as proximity of the 
asset to a protected area, the significance of which from an ecosystem impact standpoint is 
often difficult to determine.   

• Quantifying the huge diversity of ‘biodiversity’ impacts into a single unit of measurement 
(cf. a ton of carbon) – is technically extremely difficult, with no agreed approach or 
measurement unit.  

CONCEPTUAL CONSIDERATIONS 
A conceptual threshold exists for defining an asset’s (and then corporate’s or portfolio’s) 
nature-related impact, where a level of sensitivity needs to be achieved to ensure the results 
are accurate enough to enable accurate insight and differentiation (Figure 12). 
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Figure 12 – Diagram illustrating the concept of accuracy thresholds for ecosystem 
and biodiversity impact insight.

Solutions must have a robust level of impact detection, capable of predicting or identifying 
and correctly assigning the majority of a commercial operation’s impact to the correct 
holder. They must then be able to adjust those impacts at a high enough resolution to the 
fluctuating localized ecosystem resilience to define real-world ecosystem and biodiversity 
impact. Results which do not capture a significant proportion of impacts and/or are unable 
to estimate the magnitude of impacts at a suitable level of accuracy are likely to be too 
inaccurate to provide meaningful insight. They will not cross the conceptual accuracy 
threshold (Figure 12). Conversely, since no solution will be perfect, a conceptual upper 
accuracy threshold exists (Figure 12).

Within this space, differing but related applications have divergent accuracy thresholds. For 
example, the emerging ‘biodiversity credits’ and offshoot of ‘carbon credits’ will, by virtue of 
the robust accreditation needed to capture and retain market trust, almost certainly require 
more in-situ data than global scale geospatial ESG screenings (Figure 13). Due to the data 
challenges around in-situ data for global scale assessments, we focus here on what might be 
achieved, at the lower end of the spectrum, without the use of in-situ data. 
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Figure 13 – Diagram illustrating the concept that two measures are required, 1) a measurement of impact and 2) 
a measurement of ‘ecosystem and biodiversity condition’ to estimate the probable ‘biodiversity impact’. Different 
applications have differing accuracy needs, and consequently some areas will require more in-situ data.
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Indirect Impact
• Disturbances – (noise, light pollution) 

• GHG emissions - (CO2, CH4, N2O, SF6, HFCs, PFCs, etc.)

• Non-GHG air pollutants - (PM2.5, PM10, VOCs, NOx, SO2, CO), etc.

• Other resource use – (mineral extraction, wild-caught fish) 

• Soil pollutants – (volume of waste matter discharged and retained in soil over a given period)

• Solid waste – (waste by classification (i.e., non-hazardous, hazardous, and radioactive),

• Water pollutants – (nitrates, phosphates, heavy metals, chemicals, etc).

• Water use – (volume of groundwater consumed, volume of surface water consumed, etc.)

INCREASED DATA GRANULARITY (INCREASED IN-SITU DATA REQUIREMENTS) 



WWF / MAXAR / THE BIODIVERSITY DATA PUZZLE  39

BOX 3 – SUPPLY CHAINS AND THE EXTINCTION ECONOMY 
Here it is important to reflect that the assets generating the worst impacts, per unit of production, on 
the natural world, are not evenly spread across the economy. They are proportionately more often 
within the primary, lower-tier industries, as these operations by default interact more with the natural 
world (Figure 14). 

These assets are sometimes operated by known listed companies or governments but more often by 
junior, unlisted, unknown or illegal operators at the very fringes of the economy. While every asset has 
to some extent a nature-related impact, those outliers which have a dramatically higher proportion 
contribution form what could be considered conceptually as the core of the global extinction 
economy. These legal or illegal parts, primarily through habitat clearance, are continuing to drive 
humanity and the natural world towards the 6th mass extinction. 

Hence, we need a means to include dynamic supply chain data, to ensure the most 
problematic assets, which may not be accountable (e.g. illegal operations, unlisted), are not 
present and enabled in any accountable listed companies’ operations (via their supply chains). 

Figure 14 – Diagram illustrating the concept that impact on the nature world is 
unequally spread across sectors, respectively higher in lower tier industries. Yet 
higher tier companies, via their supply chains, fuel and profit from these operations. 
Consequently, understanding each asset’s impact within supply chains back to 
source is necessary to understand a parent company’s nature-related impact. 

Due to its relevance in addressing the climate and nature crises, the teams which break the 
accuracy threshold for geospatial ESG insight will achieve a major milestone. However, only 
so much can be achieved with the limits of the data available, and as we’ll argue, in many 
cases the quickest route to improved insight is to simply improve the quality and extent of data 
available, particularly asset and supply chain data.

The current situation is disconcerting. Doubly so, when we consider that there is a willingness 
amongst financial institutions to engage with biodiversity, but many report that they lack robust 
means to do so. For example, the Robeco survey found that 73% of investors do not have a 
way (a data solution) to assess impacts to biodiversity, but equally 71% would respond if 
there were greater data transparency (Figure 15). 

Figure 15 – Graph from Robeco, 2022, showing the results of a survey of asset managers.75 

In the next sections we look at possible solutions to the ‘biodiversity data 
puzzle’, exploring a geospatial approach to the problem. 
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PART 3
EXPLORING THE 
GEOSPATIAL SOLUTION  

KEY POINTS
• There is no single perfect solution to understanding nature-

related or ‘biodiversity’ impacts. Multiple approaches, 
including traditional ESG data points, will need to be 
triangulated to generate as much insight as possible.  

• Here we explore geospatial ESG, one possible data 
solution, to aid in the generation of additional insight into 
the biodiversity and ecosystem impacts of commercial 
assets (e.g. a farm, road or factory). 

• Assets are compared against observational datasets – 
geospatial data covering some relevant metric, such as 
forest loss – to give consistent insight for all assets in a 
given sector (e.g. palm oil). 

• Results can then be aggregated from the asset level to 
company and then to portfolio. Or results can be generated 
for a given area, such as a water basin, state or country, 
to provide area insight for other applications, such as 
sovereign debt insight. 

• A geospatial approach has several key advantages. First, 
biodiversity is highly site-specific: understanding where it 
is and the spatial relationship with companies’ activities 
is vital. Second, in a data-poor environment, a geospatial 
approach can directly harness the largest data source 
relevant for nature-related insight at a global scale – 
satellite-derived data. 

• The approach is also both data- and model-agnostic and, 
as a result, highly flexible to adaptation and improvement 
over time. 

• The approach faces major barriers in delivering results 
for all sectors, namely a lack of asset data (defining the 
location and ownership of commercial assets) and supply 
chain data. 

Maxar GeoEye-1 satellite image showing Akaroa NZ, on April 10, 2013 
Satellite image © 2022 Maxar Technologies.
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Figure 17 – Diagram adapted from WWF, World Bank and Global Canopy, 202279 – a hierarchy linking 
sub-asset assessments to corporate performance to the portfolio to national scales. Illustrating a simple 
method to provide methodically consistent results, at differing scales, relevant for different financial 
applications and audiences.

Figure 16 – Diagram illustrating the basics of a geospatial ESG approach. Asset data, defining the 
location of a company’s properties (assets), is compared against one or multiple observational datasets 
to provide insight. More complex models can be built, but the first step is the accurate location and 
ownership of assets, enabling any assessment.

+ =
Asset/s Observation/s

INSIGHTS

TIER 0 - COUNTRY LEVEL
Summed or aggregated scores for 
countries, based on Tier 3 and 4 data.

TIER 1 - PORTFOLIO LEVEL
Summed or aggregated scores for countries, 
based on Tier 2 company scores.

TIER 2 - PARENT/COMPANY LEVEL
Summed or aggregated scores for parents 
companies, based on Tier 3 and 4 results.

TIER 3 - ASSET LEVEL
Assessment of the asset - GIS overlaps, 
remote sensing, plus Tier 4.

TIER 4 - SUB-ASSET LEVEL DATA
Assessment within the asset - IOT, smart 
meters, traditional ESG reporting etc.

This ability to aggregate results consistently is important as FIs need insight at differing 
scales. For project finance, single asset screening is important, while corporates’ and 
portfolios’ results are need for investment and national scale insights for sovereign debt. Data 
consistency, where the same observational data can be applied and summed at different 
scales, is helpful as it means that different metrics can align. Of course, where suitable and 
useful localized, or ecosystem-specific, industry-specific observational datasets can be 
applied. And differing weightings can be applied throughout to prioritize different impacts (e.g. 
deforestation within supply chains).

Next, we’ll look in detail at the two major components that make up the geospatial ESG 
approach: asset and observational data. 

AGGREGATING RESULTS 
A company is the sum of its parts. Each asset, each operation of a company, has a differing 
ecosystem and biodiversity impact; an increasingly established way to understand impact is to 
assess each part of the company in turn. 

A geospatial approach allows us to do this, to look at each asset in turn, including all supply 
chain assets.77 These results can then be aggregated,78 linking values by ownership, to parent 
company, then to portfolio as required. The same asset and observational data can be applied 
to provide regional or national results, to help provide consistent cumulative impact insight, 
and for other financial applications, such as sovereign debt insight (Figure 17). 

EXPLORING THE GEOSPATIAL SOLUTION 
Any insights – metrics produced to define the ecosystem and biodiversity impact of a 
commercial asset – must tell us what is happening at a suitable level of reliability. As 
established, a highly granular understanding of impact often requires long-term in-situ ground 
studies – which are not a practical or viable solution for FIs, which need insight at global scale, 
consistently, week on week. Instead, we urgently need robust ex-situ solutions which can be 
scaled globally and produced regularly and which are flexible enough in design to allow future 
iteration and improvement to enable more granular insight. 

Fortunately, over the last decade progress has been made in growing fields of research, 
exploring the use of emerging technologies (e.g. AI, Satellite Remote Sensing (SRS) and 
ecological modelling) to develop solutions to tackle some of humanity’s most pressing 
problems.76 Against this backdrop of progress, here we consider the value of these 
developments, via a geospatial data approach, for improved ecosystem and biodiversity 
impact insight.

WHAT IS THE GEOSPATIAL APPROACH?
The basic approach is simple enough: the precise location of a commercial asset is defined 
and then assessed or modelled with ‘observational datasets’, primarily other geospatial 
datasets, to provide ESG-relevant insight. This approach, termed geospatial ESG, can be 
used to generate insight into social, governance or environmental topics, such as the impact 
of droughts on employment. Here we focus on ‘E’, and specifically ecosystem and biodiversity 
impact insights. Two terms are key; 
 

• Asset data – Datasets, often grouped by sector, defining the location and ideally the 
property boundaries (as a point, linear or polygon feature) of commercial assets (e.g. a 
factory, farm, mine, road, etc.), their ownership, and frequently key attributes of the asset 
class (e.g. type of power plant, production, date of construction, etc.). 

• Observational data – Any data applied, often geospatially defined, to generate insight into 
assets. For ecosystem impact, variables such as methane emissions, habitat clearance, 
biomass loss, deforestation, habitat fragmentation, endangered species proximity, habitat 
connectivity, etc.  

The basic concept of the geospatial approach is illustrated below (Figure 16): 
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ASSET DATA 
Asset data is currently only available for half a dozen sectors (e.g. mining, oil and gas, power 
plants, cement, steel facilities). It often only exists commercially where there has been a 
historic application for such data. 

To fill data gaps, or place data into the open sphere, we’ve seen a range of open data initiatives 
work towards generating asset datasets. Global Energy Observatory, WRI, Google and others 
developed a Global Power Plant Database; more recently, Descartes Labs, Oxford University 
developed one on solar facilities. Some datasets are generated manually; others have been 
developed using remote sensing, identifying assets from their specific profile (e.g. solar panels’ 
reflective values). The table below (Figure 18) illustrates both open and commercial examples:

Asset Dataset Developer/s
Open / 

Propriety
Est. No. of 

Asset

Est. No. of 
Assets with 
Operator / 
Ownership

No. of Attributes Date of last Update
Next

Update

Global Power Plant 
Database80

Global Energy Observatory/
Google/KTH Royal Institute 
of Technology in Stockholm/

Enipedia/WRI

Open
(CC BY 4.0) 34,936 20,868 36 June 2021 ‘Not Foreseeable’

Solar Farms

Global Energy Monitor
Open

(CC BY-NC-SA 
4.0)

9,331 8,492 27 May 2022 Live

Oil and Gas Extraction81 5,182 4847 22 January 2022 Live

Coal Mines 3,012 3,007 52 March 2022 Live

Coal Power Plants 13,412 13,412 37 January 2022 Live

Global Inventory of 
Utility-Scale Solar 
Energy Installations82

University of Oxford/
Descartes Lab/WRI

Open
(CC BY 4.0) 68,66183 0 50

Published Oct 27, 2021 
– providing coverage 

from June 2016 to 
October 2018.

Irregular

Palm Oil Concessions WRI Open
(CC BY 4.0) 2,233 2,106 21 December 2021 Irregular

Cement Facilities  
University of Oxford

Unknown 3,117 Unknown 18 Unknown Unknown

Steel and Iron Unknown 1,598 Unknown 19 Unknown Unknown

Power Plants 

S&P Global

Propriety 120,000+ 120,000+ 40+ Current Live

Solar Installations Propriety 20,000+ 20,000+ 40+ Current Live

Mining Projects Propriety 35,000+ 35,000+ 30+ Current Live

Oil and Gas Wells84 Enverus Propriety 550,000+ 550,000+ 80+ Current Live

Oil and Gas Field

Global Data

Propriety 30,000+ 30,000+ Unknown Current Live

Mining Projects Propriety 30,000+ 30,000+ Unknown Current Live

Power Plants Propriety 160,000+ 160,000+ Unknown Current Live

Aviation 
(Commercial aircraft) Cirium Propriety 110,000+ Unknown Unknown Unknown Unknown

Cement Facilities  Global Cement Directory Propriety 2,800+ 2,800+ Unknown Annual Annual / 2023

 
Figure 18 – A table providing examples of current open and commercial asset datasets. Values reported 
are estimates and may contain errors. Datasets sourced may not be the most recent available.  

For the geospatial approach to function, its needs asset data. On Page 99, we explore 
and discuss practical means to generate this data at scale (millions of assets) for 95% 
of listed and unlisted companies’ assets. 

ASSET PROPERTY BOUNDARIES 
To provide robust geospatial ESG insight, it is preferable that asset datasets do not define 
location by a single point location but by polygons, accurately geolocating the property 
boundaries of each asset within the asset dataset. As the area assessed directly determines the 
results generated, an incorrect area is likely to bias outputs. Correct delineation allows both an 
estimate of the holder’s responsibility (e.g. extent of environmental assets under ownership) and 
their accountability (e.g. extent of environmental assets cleared or impacted under ownership). 
These data are particularly needed for sectors with large land holdings, whose property 
boundaries are frequently unclear (e.g. mining and agriculture); they are arguably less essential 
for some sectors, such as real estate, where highly accurate estimates of property boundaries 
can more easily be discerned from satellite imagery. 

It is of course possible, lacking property boundaries, to use point location data and apply a 
buffer (e.g. a 1km circle around the asset) or create estimated areas of operation, where for 
example, Maus et al., 2020 successfully estimated the area of operation of 6,021 mines globally 
from satellite imagery (Figure 19). 

Figure 19 – From Maus et al., 
202085 – An example of how 
satellite imagery has been 
applied to estimate the extent 
of mining operations. While 
useful, it highlights the need 
within geospatial ESG for the 
true property boundaries to 
be established for accurate, 
consistent assessments of 
ecosystem and biodiversity 
impact within an asset’s directly 
owned and managed land.
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OTHER ASSET DATASET CONSIDERATIONS 
‘SUPPLY CHAIN’ ASSETS
It should be briefly noted that there is no distinction between a ‘supply chain’ asset and a directly owned 
asset within asset datasets. The rationale for this is simple: everything, depending on the perspective, 
is an asset. What might be a ‘supply asset’ in one company’s supply chain is simply an asset for its 
own company. If we geolocate every asset on Earth,86 we can assess every asset uniquely and provide 
insight. That insight can later be aggregated and adjusted – linking assets’ results together within a 
specific supply chain to give supply chain ‘scores’ or insight. And of course, we can keep track of the 
fact that these assets are, within this use case, ‘supply assets’ and not directly held assets within that 
company/portfolio. 

SUB-ASSET 
Within certain asset classes there are physical components which can be of special interest for 
geospatial ESG insight. An example of this is tailing dams: dams used by the mining sector to retain 
water and the chemical by-products of mining, refining or smelting. These large bodies of water and 
hazardous waste are normally located within the mining property. The Dam Monitoring from SATellites 
(DAMSAT) initiative87 uses satellite data (ex-situ metrics) to monitor these assets, the failure of which can 
present serious environmental, social and economic consequences. Such sub-asset insights can of 
course be linked into the geospatial ESG insights.

COMPANY TREES (ENTITY MATCHING)
It is important that subsidiary companies are correctly assigned to the correct parent company for 
insight aggregation (See Page 43). For technical ease and to lower the potential for error, this linkage 
should be included within the asset datasets themselves, where the attributes should include the 
subsidiary name and unique identifiers of the direct owner, any partial ownership, royalty holders, etc., 
and the parent company name, and its identifiers (e.g. tickers, LEI, GLN). Such identifiers are important, 
and asset data development efforts should align to ongoing efforts to support entity matching. Finally, 
complications in ownership, such as shared ownership, where multiple parties may own a percentage 
of an asset, pose little technical difficulty, but standards must be established to ensure results are 
consistently aggregated and reported. At the simplest level, the assets’ variables can be assigned to all 
holders, with no differentiation as to % of ownership (e.g. dividing impact by % of ownership).  

OBSERVATIONAL DATA AND METRICS
Observational data are the data applied onto asset data to provide insight. The analysis, measurement, 
conversion, weighting and normalization of the observational data, alone or with other datasets, produces 
metrics. For example, the observational dataset of a geospatial layer defining global forest loss, applied 
against a palm oil sector asset dataset, creates the metric, ‘12-month deforestation risk (per km2)’ for palm 
oil plantations. Non-geospatial data can be combined within the approach, as can multiple datasets, data 
triangulation, machine learning, etc., to produce more refined and complex metrics (See Page 55). 

It is difficult to discuss observational data without discussing metrics, as understandably interest 
is immediately placed on gaining insight from observational data. However, it is vital to make the 
distinction, as often observational datasets are frequently used as proxy measurements inferring 
relationships. And one observational dataset can be applied in slightly differing ways to produce dozens 
of metrics. For example, the observational datasets ‘protected areas’ and ‘national boundaries’ are 
often applied as the metric ‘national protected area extent %’, inferring better national biodiversity and 
ecosystem performance from larger percentages. But they are also applied to produce metrics defining 
the extent of land under differing protected area management categories – protected within each 
municipality, state or water basin, etc. 

Currently across the metric space, confusion reigns – a vast array of nature-related metrics now exist, 
attempting to provide insights across ‘biodiversity’-related topics, such as dependencies, impacts, risk 
and opportunities. Indeed, TNFD reported that there are over 3,000 different nature-related metrics in 
use today,88 noting that the lack of standardization of nature-related metrics is a limiting factor on FIs’ 
understanding and reporting. Even within emerging standards, it isn’t yet clear on what the metrics 
should be applied. The draft ESRS89 under its application guidance states, ‘Performance measures 

on Biodiversity and ecosystems are currently the object of many ongoing collective work at the time of 
the drafting of this Standard. That is why the disclosure requirements proposed in this [Draft] Standard 
are mostly principles-based, so as to clarify the categories of performance measures expected, as well 
as laying out the features of quality biodiversity and ecosystems-related measures rather than proposing 
specific measures per se.’ 

For those corporates and FIs working to meet these emerging standards. this could be frustrating – 
and likely to create dissatisfaction and inconsistency in the results reported. And yet this position is 
fully understandable, as there is no current perfect solution, or even widely used or accredited 
approach. Here we look at geospatial ex-situ metrics for supporting nature-related insight. 

GEOSPATIAL METRICS 
Many of the 3,000 metrics in use today for nature-related insight are geospatially based, often either direct 
products of Satellite Remote Sensing (SRS), derived products or aggerated products (e.g. indices) formed 
from one or multiple geospatial datasets and in some cases non-spatial data. 

It is useful to make a distinction between the different types of data used. Broadly speaking they can be 
divided into two groups. Vector datasets are often man-made delineations: country boundaries, protected 
areas, indigenous areas, key biodiversity areas, marine protected areas, important marine mammal areas, 
estimated species ranges, etc. Raster files, grids of pixels often used to represent continuous phenomena 
or variables, are equal-area squares with a given specific value, frequently generated from SRS data 
(e.g. satellite imagery) and used to provide global maps of land cover, elevation, forest loss, forest gain, 
flood risk, ground carbon, extreme weather risk, human disturbance, biodiversity indices, species counts, 
habitat connectivity, etc. 

Here, with input from Maxar we explore the current data landscape and potential future developments.   

CURRENT SITUATION – COMMON ISSUES WITH GEOSPATIAL OBSERVATIONAL DATA 
There is much to say on the various common data issues with geospatial observational datasets.90 For 
brevity, the common issues faced are: 

Temporal Consistency Often datasets do not update frequently enough to support timely 
ESG insight or to monitor trends, often updating once per annum or  
not at all. 

Spatial Resolution Datasets (particularly those in the open data space) can have a low 
spatial resolution. This for some applications can lack the required detail 
to detect variables.

Accuracy Often raster observational datasets are generated from complex image 
classification algorithms of satellite imagery, in which methodological 
choices have had to be made to define how to interpret images. 
Ground validation, required to improve the accuracy of data products, 
is often costly and as a result limited. In addition to the methodological 
challenges, some classifications provided might not be narrow enough 
for the sought application – e.g. ‘forest’, and not ‘pine forest’.

Data Interdependencies Due to the challenges involved in creating global observational datasets 
and the narrow pool of robust global layers, some observational datasets 
may draw from the same source data. 

Relevancy Due to the technical difficulty in measuring certain variables, some 
topics, including ecosystem condition, are not well documented within 
the observational data portfolio. 
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Lesser Flamingo, Lake Nakuru National Park, Kenya 
© Peter Chadwick / WWF
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IMPLICATIONS 
As a result of the current observational data landscape, where often there is a lack of consistent data 
over time and a lack of measurements in key areas – we frequently see the application of low temporal 
resolution data or the next best available proxies. The extent to which these proxy metrics can holistically 
account for specific impacts at the site level is often unclear. Consequently, unpicking how well or even 
what exactly these metrics capture and define, in terms of real-world biodiversity and ecosystem impact, is 
often challenging. For example, an asset’s proximity to areas of low human footprint, to protected areas or 
to endangered species has an unclear relationship to actual impact. Observational data can also be applied 
incorrectly. An increasingly common problem in emerging geospatial data products, is ‘temporal false 
negatives’ – this occurs when the observational dataset applied predates the asset under observation. For 
example, a palm oil plantation was developed, clearing primary rainforest in 2007, but the observational 
ground carbon data applied is from 2020 onwards and consequently reports 0 km2 for the asset, as it is 
measuring the already cleared site. 

WHAT OBSERVATIONAL DATA SHOULD BE USED? 
Geospatial observational datasets are highly diverse; however, there are common traits which on average 
make them more useful within geospatial ESG applications, namely: 

• High frequency – datasets which update with a high frequency (e.g. daily, weekly) are often more able to 
capture impact and define trends over time. 

• High and Moderate spatial resolution – metrics needs to be based on a combination of data at 
resolution/s sensitive enough to able to detect change within the measured variable; often nature-related 
variables require higher resolution imagery (≤15m) to detect subtle impacts (e.g. clearance of small 
blocks of habitat)

• Accuracy – observational datasets need two forms of accuracy: values need to achieve a level of 
accuracy (e.g. are correct), but also values need to determine variables at the required level of distinction 
(e.g. ‘pine forest’ and not just ‘forest’). 

• Relevancy – metrics must capture a specific variable (i.e. extent of forest loss). Those which are more 
closely aligned to the desired measurement variable (i.e. habitat loss) are more likely to be of greater utility.

• Consistency – data must be consistently produced if it is to be comparable with prior data points and 
users can trust that it will be continually available.

• Wide Application – Ideally (but it is not always feasible), outputs should be applicable to a wide range of 
ecosystems (although there is the potential for ecosystem/sector-specific metrics).

Observational data, with progress in satellite technology, machine learning etc., will change over time, as will 
geospatial ESG methods and models. The perspective at which different users will wish to view ecosystem 
and biodiversity impact will also vary from actor to actor, as will FIs’ requirements and exposures. As a result, 
no observational dataset or derived metric can be considered the ‘right’ or permanent solution. However, 
while at this time there is no widely agreed set of metrics for ex-situ ‘ecosystem and biodiversity’ insight, as 
the field evolves, we expect iteration, testing, review and benchmarking to occur and that actors are likely to 
gravitate organically to the most proven observational data and metrics for specific use cases. 

To give an illustration of what is available currently likely to be available within the immediate future, 
we outline the types of observational datasets and metrics that could be generated to provide insight:

 
OBSERVATIONAL DATA / METRICS
To give a sense of the status of SRS science and its relevance to geospatial ESG, here, structured into the 
approach applied within this document, we provide a few current examples capable, or potentially capable, of 
providing insights for 1) environmental context, 2) ecosystem condition, 3) direct impact and 4) indirect impact.

It is important to note that the data produced by these approaches can be used alone or applied to update 
or refine existing vector datasets, such as datasets defining biomes, ecoregions, water basins, etc. Or it 
can be used in combination with other vector datasets (e.g. protected areas, IP lands) to produce additional 
metrics (e.g. forest loss within protected areas).

Observational Data Metric What it Measures Frequency Current Examples 

En
vi

ro
nm

en
ta

l C
on

te
xt

Satellite imagery 
based land cover 
classification

Biome Large unit of land 
or water (also 
vegetation) adapted 
to a specific climate

Yearly Fonseca, L.M.G., Körting, T.S., Bendini, H. do N., 
Girolamo-Neto, C.D., Neves, A.K., Soares, A.R., 
Taquary, E.C. and Maretto, R.V. (2021). Pattern 
Recognition and Remote Sensing techniques applied 
to Land Use and Land Cover mapping in the Brazilian 
Savannah. Pattern Recognition Letters, 148, pp.54–60.

Satellite imagery 
based land cover 
classification

Ecoregion Large unit of land 
or water containing 
a geographically 
distinct collection 
of species, natural 
vegetation, and 
environmental 
conditions

Monthly Pötzschner, F., Baumann, M., Gasparri, N.I., Conti, 
G., Loto, D., Piquer-Rodríguez, M. and Kuemmerle, T. 
(2022). Ecoregion-wide, multi-sensor biomass mapping 
highlights a major underestimation of dry forests 
carbon stocks. Remote Sensing of Environment, 269, 
p.112849. doi:10.1016/j.rse.2021.112849.

Satellite imagery 
based water 
classification 
algorithms; Elevation 
datasets

Water basin Surface water extent, 
drainage basin extent

As often as new 
imagery becomes 
available

Duan, W., Maskey, S., Chaffe, P.L.B., Luo, P., He, B., 
Wu, Y. and Hou, J. (2021). Recent Advancement in 
Remote Sensing Technology for Hydrology Analysis 
and Water Resources Management. Remote Sensing, 
13(6), p.1097. doi:10.3390/rs13061097.

DSM, DTM, DEM, 
Point Cloud

Elevation Slope, aspect, 
height of bare earth, 
vegetation, and man-
made features

Bare earth elevation 
models change 
infrequently- less 
than yearly. Changes 
in man-made features 
can be detected more 
frequently.

Rukhovich, D.I., Koroleva, P.V., Rukhovich, D.D. and 
Rukhovich, A.D. (2022). Recognition of the Bare Soil 
Using Deep Machine Learning Methods to Create Maps 
of Arable Soil Degradation Based on the Analysis of 
Multi-Temporal Remote Sensing Data. Remote Sensing, 
14(9), p.2224. doi:10.3390/rs14092224.

Satellite imagery 
based land cover 
classification

Land cover Classification of the 
physical material on 
the surface of the 
Earth

Post event; monthly-
yearly.

Sarif, M.O. and Gupta, R.D. (2021). Spatiotemporal 
mapping of Land Use/Land Cover dynamics using 
Remote Sensing and GIS approach: A case study 
of Prayagraj City, India (1988–2018). Environment, 
Development and Sustainability. 24, 888–920. 
doi:10.1007/s10668-021-01475-0.

Satellite imagery 
based land cover 
classification

Forest cover Classification of the 
health and extent of 
the forest land class

Post event; monthly-
yearly.

Sarif, M.O. and Gupta, R.D. (2021). Spatiotemporal 
mapping of Land Use/Land Cover dynamics using 
Remote Sensing and GIS approach: A case study 
of Prayagraj City, India (1988–2018). Environment, 
Development and Sustainability. 24, 888–920. 
doi:10.1007/s10668-021-01475-0.

Satellite imagery 
based land cover 
classification

Sub-metrics 
considering key 
forest types 
of Primary / 
Secondary 
Forest / 
Forestry 
Plantation / 
Palm Oil

Classification of the 
health and extent of 
the forest land class 
and its sub-classes.

Post event; monthly-
yearly.

Sarif, M.O. and Gupta, R.D. (2021). Spatiotemporal 
mapping of Land Use/Land Cover dynamics using 
Remote Sensing and GIS approach: A case study 
of Prayagraj City, India (1988–2018). Environment, 
Development and Sustainability. 24, 888–920. 
doi:10.1007/s10668-021-01475-0.

Satellite imagery 
based land cover 
classification

Extent of 
Intact Forest 
Landscapes 
and other 
conservation 
areas

Classification of the 
health and extent of 
the forest land class

Post event; monthly-
yearly.

Filewod, B. and Kant, S. (2021). Identifying 
economically relevant forest types from global satellite 
data. Forest Policy and Economics, 127, p.102452. 

Satellite imagery 
based land cover 
classification

Mangrove forest 
extent

Classification of the 
health and extent of 
the mangrove forest 
land class

Post event; monthly-
yearly.

Lee, C.K.F., Duncan, C., Nicholson, E., Fatoyinbo, T.E., 
Lagomasino, D., Thomas, N., Worthington, T.A. and 
Murray, N.J. (2021). Mapping the Extent of Mangrove 
Ecosystem Degradation by Integrating an Ecological 
Conceptual Model with Satellite Data. Remote Sensing, 
[online] 13(11), p.2047. doi:10.3390/rs13112047.

Satellite imagery 
based land cover 
classification

Grassland 
extent

Classification of the 
physical material on 
the surface of the 
Earth

Post event; monthly-
yearly.

Khazieva, E., Verburg, P.H. and Pazúr, R. (2022). 
Grassland degradation by shrub encroachment: 
Mapping patterns and drivers of encroachment 
in Kyrgyzstan. Journal of Arid Environments, 207, 
p.104849.

Satellite imagery 
based land cover 
classification

Species 
insights (i.e. 
total % of 
species range, 
abundance, 
richness, etc.)

Vegetation species 
identification 
and biodiversity/
spectral diversity 
relationships 

Post event; monthly-
yearly.

Rossi, C., Kneubühler, M., Schütz, M., Schaepman, 
M.E., Haller, R.M. and Risch, A.C. (2021). Spatial 
resolution, spectral metrics and biomass are key 
aspects in estimating plant species richness from 
spectral diversity in species‐rich grasslands. Remote 
Sensing in Ecology and Conservation. 8(3), 297–314. 
doi:10.1002/rse2.244.
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Observational Data Metric What it Measures Frequency Current Examples 

Ec
os

ys
te

m
 C

on
di

tio
n

Satellite imagery 
based remote sensing 
algorithm

Leaf area index Ratio of leaf area 
to per unit ground 
surface used as a 
stress indicator for 
vegetation canopies

Post event; 
weekly, 
monthly, 
yearly

Hirigoyen, A., Acosta, C., Ariza, A., Vero-Martinez, M.A., 
Rachid, C., Franco, J. and Navara-Cerrillo, R. (2022). A 
machine learning approach to model leaf area index in 
Eucalyptus plantations using high-resolution satellite 
imagery and airborne laser scanner data. Annals of Forest 
Research, 64(2), pp.165–183. doi:10.15287/afr.2021.2073.

Satellite imagery 
based remote sensing 
algorithm

Foliar nitrogen 
content

Relative nitrogen 
content in vegetation

Post event; 
weekly, 
monthly, 
yearly

Wu, H., Levin, N., Seabrook, L., Moore, B. and McAlpine, 
C. (2019). Mapping Foliar Nutrition Using WorldView-3 and 
WorldView-2 to Assess Koala Habitat Suitability. Remote 
Sensing, 11(3), p.215. doi:10.3390/rs11030215.

Multiview 
photogrammetry

Vegetation 
height

Vegetation height can 
be calculated using 
satellite imagery from 
multiple look angles

Pre-event, 
post event, 
yearly

Gazzea, M., Aalhus, S., Kristensen, L. M., Ozguven, E. 
E. and Arghandeh, R. (2021). Automated 3D vegetation 
detection along power lines using monocular satellite 
imagery and deep learning. 2021 IEEE International 
Geoscience and Remote Sensing Symposium IGARSS, 
3721–3724. 

Satellite imagery 
based land cover 
classification

Habitat 
structure

Classification of the 
type and distribution 
of vegetation

Post event; 
weekly, 
monthly, 
yearly

Merrington, A.T., Milodowski, D.T. and Williams, M. (2021). 
Optimising remotely sensed land cover classification for 
habitat mapping in complex Scottish upland landscapes. 
Space, Satellites, and Sustainability II, 11888, p.118880G. 
doi:10.1117/12.2600869.

Satellite imagery 
based remote sensing 
algorithm

Fraction of 
vegetation 
cover

A ratio (usually 
percentage) of total 
vegetated area to the 
total study area 

Post event; 
weekly, 
monthly, 
yearly

Ma, X., Lu, L., Ding, J., Zhang, F. and He, B. (2021). 
Estimating Fractional Vegetation Cover of Row Crops from 
High Spatial Resolution Image. Remote Sensing, 13(19), 
p.3874. doi:10.3390/rs13193874.

Satellite imagery 
based remote sensing 
algorithm

Chlorophyll 
content

A key indicator of 
leaf greenness and 
nutrient deficiencies

Post event; 
weekly, 
monthly, 
yearly

Zhang, H., Li, J., Liu, Q., Lin, S., Huete, A., Liu, L., Croft, H., 
Clevers, J.G.P.W., Zeng, Y., Wang, X., Gu, C., Zhang, Z., 
Zhao, J., Dong, Y., Mumtaz, F. and Yu, W. (2022). A novel 
red‐edge spectral index for retrieving the leaf chlorophyll 
content. Methods in Ecology and Evolution. 00, 1-17. 
doi:10.1111/2041-210x.13994.

Satellite imagery time-
series based deep 
learning models

Land surface 
green-up

Onset of seasonal 
vegetation growth

Seasonally Lake, T.A., Briscoe Runquist, R.D. and Moeller, D.A. (2022). 
Deep learning detects invasive plant species across 
complex landscapes using Worldview‐2 and Planetscope 
satellite imagery. Remote Sensing in Ecology and 
Conservation. doi:10.1002/rse2.288.

Satellite imagery time-
series based deep 
learning models

Land surface 
senescence

Conclusion of 
seasonal vegetation 
growth

Seasonally Lake, T.A., Briscoe Runquist, R.D. and Moeller, D.A. (2022). 
Deep learning detects invasive plant species across 
complex landscapes using Worldview‐2 and Planetscope 
satellite imagery. Remote Sensing in Ecology and 
Conservation. doi:10.1002/rse2.288.

Satellite imagery time-
series based remote 
sensing classifications 
and algorithms

Above-ground 
biomass 
(carbon cycle)

Mass of living 
vegetation above the 
soil surface 

Post event; 
weekly, 
monthly, 
yearly

Zhu, Y., Liu, K., Liu, L., Myint, S.W., Wang, S., Cao, J. and 
Wu, Z. (2020). Estimating and Mapping Mangrove Biomass 
Dynamic Change Using WorldView-2 Images and Digital 
Surface Models. IEEE Journal of Selected Topics in Applied 
Earth Observations and Remote Sensing, 13, pp.2123–2134. 
doi:10.1109/jstars.2020.2989500.

Satellite imagery 
based remote sensing 
algorithms

Leaf dry matter 
content

Remote sensing 
index (ratio) of 
leaf dry matter to 
saturated fresh mass; 
used to indicate 
vegetation growing 
conditions

Post event; 
weekly, 
monthly, 
yearly

Zhang, Z., Tang, B.-H. and Li, Z.-L. (2018). Retrieval of 
leaf water content from remotely sensed data using a 
vegetation index model constructed with shortwave infrared 
reflectances. International Journal of Remote Sensing, 40(5-
6), pp.2313–2323. doi:10.1080/01431161.2018.1471553.

Satellite imagery 
based remote sensing 
algorithms

Ecosystem soil 
moisture

Measure of soil 
moisture content; an 
indicator of the health 
or stress of land 
surface ecosystems

Post event; 
weekly, 
monthly, 
yearly

Son Le, M. and Liou, Y.-A. (2021). Temperature-soil 
moisture dryness index for remote sensing of surface 
soil moisture assessment. IEEE Geoscience and Remote 
Sensing Letters, 19, 1–5

Observational Data Metric What it Measures Frequency Current Examples 

D
ire

ct
 Im

pa
ct

Satellite imagery 
based land cover 
classification

Land cover change / Habitat 
loss

Classification of the 
health and extent of 
the designated land 
cover class and its sub-
classes.

Post event; 
monthly-yearly.

Smith, K.E.L., Terrano, J.F., Pitchford, J.L. 
and Archer, M.J. (2021). Coastal Wetland 
Shoreline Change Monitoring: A Comparison 
of Shorelines from High-Resolution 
WorldView Satellite Imagery, Aerial Imagery, 
and Field Surveys. Remote Sensing, 13(15), 
p.3030. doi:10.3390/rs13153030.

Satellite imagery 
based remote 
sensing algorithms

Forest loss Forest species 
identification and 
biodiversity/spectral 
diversity relationships

Post event; 
monthly-yearly.

Jackson, C.M. and Adam, E. (2021). Machine 
Learning Classification of Endangered Tree 
Species in a Tropical Submontane Forest 
Using WorldView-2 Multispectral Satellite 
Imagery and Imbalanced Dataset. Remote 
Sensing, 13(24), p.4970. doi:10.3390/
rs13244970.

Satellite imagery 
based remote 
sensing algorithm

Forest gain Forest species 
identification and 
biodiversity/spectral 
diversity relationships

Post event; 
monthly-yearly.

Kamal, M., Sidik, F., Prananda, A.R.A. 
and Mahardhika, S.A. (2021). Mapping 
Leaf Area Index of restored mangroves 
using WorldView-2 imagery in Perancak 
Estuary, Bali, Indonesia. Remote Sensing 
Applications: Society and Environment, 23, 
p.100567.

Satellite imagery 
based land cover 
classification

Sub-metrics considering 
key forest types of Primary / 
Secondary Forest / Forestry 
Plantation / Palm Oil

Classification of the 
health and extent of 
the designated land 
cover class and its sub-
classes in secondary 
forests

Post event; 
monthly-yearly.

Zhao, Y., Ma, Y., Quackenbush, L.J. and 
Zhen, Z. (2022). Estimation of Individual 
Tree Biomass in Natural Secondary Forests 
Based on ALS Data and WorldView-3 
Imagery. Remote Sensing, 14(2), p.271. 
doi:10.3390/rs14020271.

Satellite imagery 
based remote 
sensing algorithms

Soil exposure Soil quality assessment 
and identification 
/ spectral diversity 
relationships

Post event; 
monthly-yearly.

Galle, N.J., Brinton, W., Vos, R., Basu, B., 
Duarte, F., Collier, M., Ratti, C. and Pilla, F. 
(2021). Correlation of WorldView-3 spectral 
vegetation indices and soil health indicators 
of individual urban trees with exceptions to 
topsoil disturbance. City and Environment 
Interactions, 11, p.100068. doi:10.1016/j.
cacint.2021.100068.

Satellite imagery 
based remote 
sensing algorithms

Fire intensity and burn 
extent 

Fire extent assessment 
and identification 
/ spectral diversity 
relationships

Post event; 
monthly-yearly.

Fernández-Guisuraga, J.M., Verrelst, J., 
Calvo, L. and Suárez-Seoane, S. (2021). 
Hybrid inversion of radiative transfer 
models based on high spatial resolution 
satellite reflectance data improves fractional 
vegetation cover retrieval in heterogeneous 
ecological systems after fire. Remote 
Sensing of Environment, 255, p.112304. 
doi:10.1016/j.rse.2021.112304.

Satellite imagery 
based remote 
sensing algorithms

Landslide impact Landslide conditioning 
factor assessment and 
identification

Post event; 
monthly-yearly.

Singh, P., Sharma, A., Sur, U. and Rai, 
P.K. (2020). Comparative landslide 
susceptibility assessment using statistical 
information value and index of entropy 
model in Bhanupali-Beri region, Himachal 
Pradesh, India. Environment, Development 
and Sustainability, 23(4), pp.5233–5250. 
doi:10.1007/s10668-020-00811-0.
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Observational Data Metric What it Measures Frequency Current Examples 
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Interannual variability Year over year changes in 
health and extent of various 
vegetation species

Seasonally, yearly Li, Z., Sun, W., Chen, H., Xue, B., Yu, J. and Tian, Z. (2021). 
Interannual and Seasonal Variations of Hydrological 
Connectivity in a Large Shallow Wetland of North China 
Estimated from Landsat 8 Images. Remote Sensing, 13(6), 
p.1214. doi:10.3390/rs13061214.

Satellite imagery time-
series based machine 
learning classification 
models

Seasonal variability Seasonal changes in health 
and extent of various 
vegetation species

Seasonally, yearly Colkesen, I., Kavzoglu, T., Atesoglu, A., Tonbul, H. and 
Ozturk, M.Y. (2022). Multi-seasonal evaluation of hybrid 
poplar (P. Deltoides) plantations using Worldview-3 
imagery and State-Of-The-Art ensemble learning 
algorithms. Advances in Space Research. 

Satellite imagery 
based remote sensing 
algorithms

Coastal eutrophication 
potential

Excessive nutrient levels in 
coastal water bodies

Pre-event, post event, 
as needed

Ben Hadid, N., Goyet, C., Ben Maiz, N. and Shili, A. (2022). 
Long-term forecasting in a coastal ecosystem: case study 
of a Southern restored Mediterranean lagoon: The North 
Lagoon of Tunis. Journal of Coastal Conservation, 26(2). 
doi:10.1007/s11852-022-00858-3.

SAR based machine 
learning models

Marine oil spill 
detection frequency 
and density 

Natural and/or artificial oil 
seeps or spills

Post-event; as needed de Oliveira Matias, Í., Genovez, P.C., Torres, S.B., de 
Araújo Ponte, F.F., de Oliveira, A.J.S., de Miranda, F.P. and 
Avellino, G.M. (2021). Improved Classification Models to 
Distinguish Natural from Anthropic Oil Slicks in the Gulf of 
Mexico: Seasonality and Radarsat-2 Beam Mode Effects 
under a Machine Learning Approach. Remote Sensing, 
13(22), p.4568. doi:10.3390/rs13224568.

THE ROLE OF GEOSPATIAL ESG AS A COMPONENT OF ESG 
DATA TRIANGULATION 

It is important to reflect that while Satellite Remote Sensing (SRS) methods offer increasing insight, 
and are continuously improving, no ex-situ method can measure everything. Consequently, the huge 
diversity of impacts facing the natural world will never be able to be captured entirely by ex-situ 
approaches. Understanding, for example, resource extraction (i.e. wild fish caught, bush hunting, 
etc.), soil pollutants, water use, solid waste or specific species ranges will in almost all cases require 
in-situ (ground collected) data. As in-situ data aggregation improves over the coming years at the 
global scale, particularly on biodiversity, it will be possible to integrate this data into the approaches 
outlined in this document to improve insight. 

REFLECTIONS ON METRICS
Topic Difficulty – Not all metrics are equal. From a SRS perspective, some observational datasets 
are simpler and easier to achieve than others. What we see within the nature-related space is a ramp 
of difficultly, where the easier metrics have long been achieved, and the more technically difficult, 
such as defining ‘landscape condition’, remain out of reach. Clarity needs to be provided not only on 
the confidence of a metric but on which area data gaps are present within the results.  

Biome Specific Metrics – As outlined at the start of this paper, each ecosystem is unique. 
Consequently, to improve insight it seems likely we will see the rise of ecoregion specific metrics, 
where it may be possible to improve insight by spatially limiting SRS methods to a given region, 
allowing the tailoring of approaches to the specific characteristics of nature present. Already 
a number of robust biome and ecoregion maps exist, which could be used to provide spatial 
delineations for application of these niche methods (Page 71). 

Sector Specific – Already we are seeing the rise of sector specific metrics (e.g. mining tailing dam 
monitoring). As time goes on it is inevitable, with improvements in SRS, more and more satellites 
deployed, increases in AI capabilities, etc., that we will witness the increase in niche sector specific 
data solutions relevant for geospatial ESG applications.   

Metrics Aggregation – While the development of metrics tailored to specific biomes and sectors is 
to be welcomed for improved insight, it comes at a potential cost. When actors attempt to aggregate 
data at the parent company or portfolio level, the greater and more varied the specificity of metrics 
applied, the harder direct aggregation will be. It seems probable that there will be other intelligent 
means to aggregate data – yet it is a potential shortfall in the development of greater and greater 
ecosystem and sector metric specificity. On Page 82 we explore the topic of quantification and 
aggregation in more detail. 

Figure 20 – Illustration of the concept that different ESG data solutions have a higher relevancy for 
capturing the proportional nature-related impact of differing sections of the economy. 
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It should be stressed that no single data solution can hope 
to provide all the necessary components of nature-related 
ESG insight. Consequently, geospatial ESG insight is not a 
standalone ESG data solution but one of many to be integrated 
with others to provide improved insight. 

It is interesting to reflect differing data solutions have a 
different proportionate relevancy in capturing impact across 
industry tiers. For example, it is likely that the importance of 
geospatial in screening a company’s direct assets decreases 
towards higher tiers, and the importance of screening a 
company’s supply chain assets increases towards higher tiers.  

This is because high tier sectors are far more likely to have 
their directly held assets within long-established urban areas 
with a lower potential for destruction of natural habitats. 
Primary industries have comparatively smaller supply chains, 
and their role is likely to be proportionately lower in overall 
company impact, most of which will be contained in their 
own direct holdings and actions. Conversely, the nature-
related impact of a company’s workforce is likely to be 
proportionately more significant in higher tiers, where often 
the higher tiers have larger numbers of employees relative 
their spatial footprint than lower tier sectors (Figure 20). 

The extent to which Figure 20 is correct is not vital. What 
is important is the concept that different data approaches 
provide insights that other approaches cannot. As 
geospatial insights become normalized, opportunities 
will arise to combine its insights with other ESG data 
approaches for improved holistic ESG insight. For example, 
one commercial provider currently uses SRS data to 
estimate the methane emissions of oil and gas operations 
within the continental United States, comparing those 
numbers to the companies’ officially reported emissions. 
Both data points, and the variance between them, provide 
additional ESG insight. 

As an example of the value of combining differing data 
approaches, WWF’s Conservation Intelligence team are 
currently working with Carnegie Mellon University to build 
a library of media articles published online about impacts 
to conservation sites (e.g. fires, logging, poaching, heavy 
metal pollution, floods, etc.), geolocating articles to specific 
sites (See Box 4).This Natural Language Processing (NLP) 
driven approach is able to identify ‘entities’, such as company 
names, and assets and therefore has the potential to be linked 
to geospatial ESG insights. This provides insight on aspects 
impossible to detect via ex-situ SRS approaches alone, 
supporting additional verification, and aims to provide site 
level scorings for threat presence, which in turn can be used 
to help qualify landscape condition.
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ADVANTAGES OF A GEOSPATIAL APPROACH  
The geospatial approach faces challenges, as do all methods attempting to tackle such a 
complex topic, but arguably the approach has several advantages: 

• Biodiversity – The ‘biodiversity’ around you, in gardens, hedges, blocks of native habitat, 
are hyper-localized. The difference between sites of intact, rare biodiversity and low 
biodiversity can be as little as a single metre. Biodiversity occurs in very specific places. 
Even within large areas of high biodiversity, such as the Amazon, biodiversity is not equally 
spread, but rather topographic features, microclimates, will lead to some small areas 
containing niche species not found in the wider region. 

• Biodiversity is inherently geospatial; a geospatial data approach best allows the 
inclusion of this reality.   

• Data – One of the largest problems with the ‘biodiversity puzzle’ is data. We lack, globally 
and even regionally, both direct measures on species and ecosystem function – in-situ 
data, vital for establishing baselines and trend measures – and indirect proxy data which 
could be potentially used to support insights. Universally within this space, data cadence 
is a repeating issue, where often it difficult to gain access to updates at high frequency (i.e. 
monthly or better). 
 
Consequently, lacking robust timely direct data, remote sensing data, primarily from 
satellites, has become an increasingly vital data source. Independent, robust, quantifiable, 
consistent and available at increasingly highly temporal and spatial resolution, it is a 
key resource in providing ex-situ insight at a global scale, week on week. It can also be 
interlinked with ecology / conservation in-situ data, which is increasingly geolocated. 
 
A geospatial approach readily allows the ingestion of this rich, growing and 
improving data source, while still allowing triangulation with other datasets. 

• Scale – The financial sector is interested in operations which span every corner of the 
globe. Any data solution must therefore also have global reach. Geospatial data is already 
generated at the global scale, allowing comparability between variables.  

• Climate Change – Although not directly tackled in this document, climate variables are 
heavily interlinked with nature-related impact and vice versa; hence, understanding that 
connection will be increasingly important. Since much if the world of climate change data is 
geospatially defined, a geospatial approach can align to climate data.

• High Cadence – Impacts to biodiversity can occur and dissipate at a high frequency 
(e.g. a marine oil spill from a pipeline). Consequently, to capture such impacts before 
they disappear, high-frequency data is required. Earth Observation products already 
provide very high cadence data – daily imagery of the globe; a geospatial approach is well 
positioned to ingest and benefit from this data.

• Independence – Geospatial insight is normally entirely independent of the company itself, 
offering a potentially useful unbiased data source. In contrast, within self-reported ESG data 
(e.g. annual reports), there is an incentive to minimize reporting. 

• Critically, a geospatial approach can be data and model agnostic. This is vital: as data 
changes and improves, data and models will need to be updated. In addition, this approach 
facilitates interoperability with third-party models to run generic or niche assessments on 
specific types of commercial operations within specific ecosystems. 

BOX 4 – DATA TRIANGULATION
Authors: Fei Fang, Leonardo Assistant Professor – Carnegie Mellon University, Ryan 
Shi, graduate student – Carnegie Mellon University and Sedrick Scott Keh, graduate 
student – Carnegie Mellon University

As we move forward, data triangulation will become an essential component within ESG, 
uniting insights from differing data solutions to fill data gaps. Here we provide an example 
of natural language processing (NLP) based media scraping, providing insights that could 
potentially be linked, via company names, asset, location or a combination, to geospatial ESG 
insights.

Carnegie Mellon University (CMU) worked with WWF to develop ‘NewsPanda’, a machine 
learning-based system which automatically detects, classifies and analyses news articles 
related to conservation and infrastructure. NewsPanda aims to automate processes that 
would otherwise be costly to do manually, such as news article collection, relevance 
classification and keyword extraction. 

NewsPanda consists of five modules. Using names of conservation sites as search terms, the 
information retrieval module is able to scrape hundreds of news articles from various global 
and local news sites every week. The main relevance classification module then uses state-
of-the-art NLP models to classify news articles along two dimensions, namely conservation 
relevance and infrastructure relevance. This machine learning model builds upon previous 
work by The Alan Turing Institute and WWF, taking into consideration certain features such as 
sentiment analysis polarities and topic value vectors. 

Training the model involved using active learning techniques as well as ways to perform noisy 
label correction.91 Afterwards, in the article postprocessing module, NewsPanda extracts 
crucial information such as keywords and related named entities, such as specific location 
names, people and organizations. This is helpful in identifying common links between 
developments across different locations and across different points in time, helping to 
provide key insights to local WWF offices and field teams, as well as other parties interested 
in monitoring developments in conservation and infrastructure.

After generating these insights, a visualization module delivers these extracted articles and 
relevant locations to be consumed by the WWF staff. One such example is the GIS dashboard 
developed by WWF India (Figure 21). Every week, the WWF India team receives a list of news 
articles predicted as relevant, together with the corresponding keywords, named entities and 
geospatial coordinates. These relevant areas are then plotted on a dashboard, which will 
make it easier for field teams to explore and navigate. Furthermore, selected outputs from 
NewsPanda are also available to the public through a social media module on Twitter, called 
WildlifeNewsIndia. There are plans to extend the deployment, and work is currently being 
done to incorporate a broader collection of languages beyond English.

By building a global library of news articles about developments occurring within key 
conservation sites, NewsPanda provides a highly useful resource for conservationists 
but also potentially for ESG applications, where entity names (e.g. company names) 
could potentially be extracted and linked, and triangulated with other ESG data points. 
 

Figure 21 – The GIS 
dashboard by WWF India, 
where each relevant article 
is shown on the map with 
its corresponding key 
details. The highlighted 
red areas indicate clusters 
of articles found by the 
NewsPanda pipeline.
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DISADVANTAGES OF A GEOSPATIAL APPROACH  
As is well documented, there are significant challenges to providing 
nature-relevant data insights at global scale, and geospatial solutions 
are no exception. While it is expected that many of these issues will 
be resolved as the field develops, there are significant obstacles that 
currently limit the extent, scale and accuracy of geospatial methods.

• Asset Data – There is a deficiency of asset data, either openly or 
commercially available, required for enabling a geospatial approach 
(See Page 44). The asset data which is available tends to be due 
to a historic commercial need. Currently only a select few sectors 
(e.g. power, mining, oil and gas, shipping) have robust global asset 
datasets. The majority of sectors (e.g. agriculture, real estate, etc.) 
lack globally aggregated datasets. 

• Supply Chain Data – Almost no supply chain data is disclosed; while 
there has been sustained effort from commercial business intelligence 
providers, developing products such as FACTSET, there is still a lack 
of detailed, dynamic insight into 95%+ of companies’ supply chains to 
source. Without supply chain data, the geospatial approach (and other 
data approaches) lacks the means to capture high tier industries’ 
nature-related impact.   

• Observation Data – While there is a huge volume of observational 
data available, there is a lack of relevancy, temporal and spatial 
resolution, and consistency with these datasets.92 On top of this, there 
is confusion surrounding which observational datasets, and derived 
metrics, to apply for defining biodiversity and ecosystem impact. 
However, as the commercial SRS space begins in earnest to provide 
data solutions for geospatial ESG application, we can expect this to 
change rapidly. 

• Standards – With the field only just emerging, there are essentially no 
standards for data infrastructure, asset datasets, supply chain data, 
data security, interoperability, ownership, observational datasets, 
geospatial ESG methodologies, etc. However, standards do already 
exist across similar use cases, and as the field develops, standards 
can potentially be rapidly developed.  

• Business Model – The data ecosystem of geospatial ESG is far more 
diverse than traditional ‘ESG’ business intelligence – it requires SRS, 
Cloud Compute, Business Intelligence asset and supply data, NGO 
and IGO biodiversity and ecosystem data, etc., requiring multiple 
open and commercial actors to collaborate and forge partnerships 
to generate novel data products, with an as-yet-unproven business 
model. A direct barrier to entry is this multi-stakeholder complexity 
in a space that traditionally has been controllable by a single entity. 
Consequently, Business Intelligence and ESG data providers may be 
reluctant to invest in the space due to the complexity and uncertainty 
around collaboration between multiple stakeholders (See Page 92). 

Photo: Andean cock of the rock (Rupicola peruviana); Manu National Park, 
Peru - species live in defined ranges, some highly specific (See Page 57) 
© André Bärtschi / WWF   
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KEY POINTS
• To provide comparable insight, geospatial ESG requires a 

widely agreed high-level framework, and clarity on approaches. 
In this section we explore various core concepts for discussion. 

• Here we propose to divide insight into assets into four 
distinct categories – the ‘IBLG’: values Internal (I) to the 
property, Bordering (B) the property (less than 1km), in the 
surrounding Landscape (L) (1–1,000km), and wider Global (G) 
values (≥1,000km).

• Factually stating the results within different areas relative to 
the asset avoids issues around causation, reducing technical 
complications – and potential legal ramifications – in trying to 
prove or assign impact to specific actors. 

• We suggest that ‘biodiversity’ and ‘ecosystem’ baselines 
must be included, as otherwise impact/s prior to 1980, the 
beginnings of the SRS record, are likely to be excluded. 

• Observational datasets and derived metrics could be framed 
in a diverse range of ways; here we suggest defining the 
‘environmental assets’, ‘direct’ impacts and ‘indirect’ impacts 
within the IBLG areas. 

• Significantly more complex models and insights can be 
developed, but for now, we attempt to select the simplest 
methods, to outline the vision and highlight the potential of the 
emerging field. 

• Supply chain results can be aggregated within the IBLG 
approach, to provide aggregated scores for every supplier and 
asset within the supply chain. Existing geospatial datasets 
defining the location of transportation infrastructure (e.g. 
roads, railways) can be used to develop a standard score of 
the ‘ecosystem and biodiversity’ cost for any given route – 
enabling the estimation of ‘transport biodiversity costs’ for the 
shortest routes.  

• The concepts outlined can be united into a single datasheet, to 
define results for any given asset (or aggregation).

Maxar WorldView-2 satellite image showing colour infrared image of oil 
slicks near Playa Bahia Blanca-Ventanilla Peru, on January 19, 2022. 
Satellite image © 2022 Maxar Technologies.
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EXPLORING A SYSTEMATIC APPROACH TO GEOSPATIAL INSIGHT  
As we develop solutions to aid understanding of ecosystem and biodiversity impact, there is a 
temptation – as it is such a complex topic – to build ever more elaborate frameworks, models 
and solutions to address that complexity. 

We argue the opposite. First, we should ensure we have the basics achieved – in this case, 
the ability to detect and assign the most serious ecosystem and biodiversity impacts at 
an asset level. After this, we can unravel more niche impacts and topics. However, it is 
important that any solutions developed are not created to the later exclusion or restriction of 
the integration and development of other areas, such as dependencies, opportunities and 
neighbouring topics (e.g. social issues, climate change) or the addition of more granular data.  

This means we need a framework to work within which allows us to tackle issues around 
ecosystem and biodiversity impact but still enable expansion. As with the periodic table, we 
first should define the simpler elements, hydrogen, and helium, but ensure that the framework 
has the flexibility to tackle the more complex questions around impact on biodiversity and 
reliance on ecosystem services. 

To move the geospatial ESG ecosystem and biodiversity insight forward, we raise some 
concepts for discussion, specifically:

• The spatial division of impact/s
a. Internal 
b. Bordering 
c. Landscape
d. Global

• Division of observational data 
a. Baselines 
b. Environmental context 
c. Direct impacts 
d. Indirect impacts 

• Supply chain and transportation (infrastructure) impacts

• Uniting components 

The concepts outlined here are to be viewed as draft concepts to encourage debate 
and catalyse efforts; each component will need careful consultation, peer review, 
standards, benchmarking, etc. to test its validity. 

SPATIAL DIVISION OF INSIGHTS 
To simplify the complexity in assigning ecosystem and biodiversity impact to assets, it useful 
to consider using fixed (or relative ratio) area values to capture and categorize impacts. Here 
we propose the following area definitions (Figure 22). 

i) Internal (I) – values reported within the property boundary of the asset. 
ii) Bordering (B) – values reported in the immediate area bordering the property (≤km)
iii) Landscape (L) – values reported within wider landscape/s (1–1,000km) 
iv) Global (G) – values for a given metric with impact beyond ≥1000km (e.g. GHG emissions). 

Figure 22 – Illustration outlining the proposed area divisions for terrestrial commercial assets – 
values within the property, bordering the property (less than 1km), regional values in the surrounding 
landscape (1 –1,000km) – and wider global values (≥1,000km).

The division of impact into consistent areas is, from a technical perspective, simple and 
comes with several significant advantages. First, it helps resolve issues around causation. 
Rather than attempt to prove the causation of an asset’s impact, we can reduce the 
complexity of the challenge by just factually stating what has occurred within different 
area boundaries relative to the asset. This resolves how to assign issues of unclear origin 
– for example, deforestation can occur alongside the border of a palm oil plantation; this 
cannot be assigned to the asset itself as it is outside the property, but it can be captured 
as a ‘border’ impact. By using the same consistent approach for all terrestrial assets 
globally, no specific holder or asset class is biased. 

Second, it allows the consistent development and application of landscape insights, vital 
for dealing with issues around cumulative impact and the shifting magnitude of localized 
impact (See Page 86). Impacts within a fixed area designation (e.g. a specific water basin) 
can be captured to provide dynamic, consistent and comparable insight into the asset’s 
wider landscape condition, which can then be used to adjust IB impact weightings 
(See Page 88). Third, by dividing out ‘global’ impacts, those which are which effectively 
ubiquitous in Earth systems (e.g. GHG emissions), it provides a direct means for users 
to easily consider the difference between an asset’s, or companies ‘localized’ impacts, 
within the context of ‘global’ impacts (e.g. habitat loss vs. GHG emissions).  

In the next section, we’ll briefly run through each of these (IBLG) area designations, 
exploring a few examples. 

INTERNAL (I)
(Impacts within the Property)

BORDERING (B)
(Impacts immediately outside the Property ≤1 KM)

LANDSCAPE (L) 
(Impacts within the water basin, local region ≤100 KM)

GLOBAL (G)
(Impacts with global reach, i.e. GHG emissions, 
air pollution, workforce consumption footprint)
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INTERNAL (I) INSIGHT
Any values as reported within the property 
boundary of the asset itself. 

In many cases, (I) results will report relatively 
static values. This is because most assets – 
fields, factories, real estate – tend to clear all 
habitat occupying the near full (95%+) extent of 
the property boundaries. This is because land 
is expensive, and we tend to optimize the use of 
land, particularly in urban areas, where the vast 
majority of asset numbers are located. 

If we consider different asset types, we can 
conceptualize the types of data reported 
(Figure 23).

All assets, take up a spatial area; hence, the 
historic ‘ecosystem or biodiversity baselines’ 
(e.g. AD 1500, 1990, 2000, 2010, etc.) or 
regional uniqueness can be measured to 
provide a baseline. From there, any post-1980 
observational datasets (e.g. land cover, ground 
carbon, water coverage, etc) can be measured 
for the sites – capturing and defining over 
time any direct impacts (habitat clearance / 
restoration) over the last 10–30 years93 within 
these property boundaries. 

After considering direct impact, it is possible to 
consider indirect impact, via actual or modelled 
observational data insight. This is where biome 
and sector specific metrics are useful. For 
example, we could look to measure the infra-red 
heat profile of the shopping centre to estimate its 
likely power consumption or the extent of carbon 
loss from deforestation. 

In many cases, indirect impacts may not have 
an ex-situ data solution, where it is simply not 
possible to measure some variables (e.g. heavy 
metal soil pollution). This is a reality of any ex-
situ data solution, where some measures can 
only be achieved with in-situ, ground data. To 
aid filling these shortfalls, it may be useful to use 
Landscape (L) insight to provide some level of 
insight (See Page 88) and/or to fill those gaps 
through data triangulation (See Page 55).  

BORDERING (B) INSIGHT
Any values reported in the immediate area 
bordering the property (≤1km). 

If we consider the three examples in Figure 24, 
we can see that by applying a buffer of 1km to 
an asset, we can use the observational data 
captured to provide the immediate context to 
the asset.

The immediate area around any given asset 
provides insight into its potential for wider 
direct or indirect impacts; if no existing habitat 
is surrounding the asset, its likelihood for 
expansion and localized indirect impact is, 
generically speaking, diminished. If, however, 
as in the case of the mine, it is surrounded by 
pristine habitat, it’s potential increases. It is 
possible to define what is within this bordering 
area and any changes to it, via observational 
datasets, such as land cover, biomes, 
ecosystem, species data, etc., to provide insight 
into the past and current context of the asset. 

One consideration to note: when applying 
‘buffers’ for (B) insights, it may be useful to use 
a more sophisticated approach to determine the 
extent of the buffer, based on the asset’s size 
or sectorial risk profile, as it might be illogical to 
apply a 1km buffer to those assets with a smaller 
footprint (e.g. 10 m2). To keep the concept 
simple for now, we suggest a standard 1km 
buffer – but it is likely this can be improved.

Figure 23 – Satellite images illustrating three different types of asset classes, 
top), shopping centre, Cairns, Australia; middle), field, Madhya Pradesh, India; 
both showing their true property boundaries (orange); bottom)  bauxite mine, 
Pará, Brazil with estimated boundaries (blue).

Figure 24 – Satellite images illustrating three different types of asset classes: 
top) shopping centre, Cairns, Australia, middle) field, Madhya Pradesh, India, 
with their true property boundaries and 1km buffer (orange); bottom) bauxite 
mine, Pará, Brazil with estimated boundaries and 1km buffer (blue).
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LANDSCAPE (L) INSIGHT  
Any values reported within wider area designation/s (1 –1,000km). 

Understanding what impacts have occurred within an asset’s property (I), and just outside 
(B) is, of course, important. However, this understanding also needs to be put into context 
of the wider landscape (See Page 86). If, for example, an asset is operating in a landscape 
with stable forest cover, its IB impacts are likely to remain constant. If, however, forest 
cover is being lost dramatically in the wider region, then the importance of any remaining 
forest increases, as do the significance and magnitude of any ongoing or novel localized 
(IB) impacts on the remaining forest.  

Here we propose the use of water basins and sub-basins94 as naturally occurring nested 
non-subjective divisions of the landscape (Figure 25), as water basins, controlling the flow 
of water, naturally often aggregate impacts within them, and biodiversity and ecosystems 
tend to loosely align. 

Figure 25 – Global map showing the HydroBASINS division of the world into water 
basins and nested sub-basins (Level 6).  

To develop landscape insight, it is simply a case of assigning each asset to the 
‘landscape/s’ it is located within95; in this case we propose sub-basins (Level 6). 
‘Landscape values’ for those areas can be generated using observational data and 
trends detected (e.g. ongoing year on year habitat loss). This provides insight into both 
cumulative impacts and the relative magnitude of impacts within a given landscape, 
allowing the adjustment of the impact weightings and aiding in the capture of the 
magnitude of localized impacts within the context of wider scale trends (See Page 86). 

 

Figure 26 – Simple illustration of the area within 
the water basins (Level 6) of three different types 
of asset classes, top) a shopping centre; middle)
agricultural field with their true property boundaries 
and 1km buffer (orange), and bottom) a bauxite mine 
with estimated boundaries (blue). 
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GLOBAL (G) INSIGHT  
Values for a given metric with non-localized impact beyond 1,000km (e.g. GHG emissions). 

In some cases, impacts do not remain bound to a specific area but dissipate into the Earth’s 
systems, for example, air pollutants and emissions, such as NOx or GHGs, that disperse into 
the atmosphere. Such impacts are effectively ‘global’ in range – where GHGs emissions are 
driving global issues such as climate change and ocean acidification. 

These metrics are assigned to (G) and allow users to consider, and make their own 
determination as to the significance of, the more localized impacts against global impact/s. 
Some assets and companies are likely to have low localized impacts but high global impact 
(e.g. aviation), and vice versa. 

 

DIVISION OF OBSERVATIONAL DATA / METRICS
To simplify the complexity in understanding what environmental assets, the landscape 
condition, and what direct and indirect impacts are associated within the IBLG areas for a 
given asset, its useful to consider fixed thematic divisions. Here we consider the following: 

• Baselines – The historic ‘biodiversity’ or ‘ecosystem’ values.

• Environmental Context – The extent of defined environmental assets present.

• Direct Impacts – Any natural or human direct impacts.

• Indirect Impacts – Any natural or human indirect impacts. 

• Additional Variables 

 - Reflections On Supply Chain and Transportation (Infrastructure) Impacts

 - Supply Chains 

This provides context of any asset, allowing the aggregation of data points, which can be 
quantified into comparable formats (See Page 82). 

BASELINES
If we accept that a data- and model-agnostic approach is vital – needed as different actors 
will inevitably wish to use different asset, supply chain and observational datasets, or change 
and upgrade these, and apply differing models for tailored social, climate, biodiversity 
and ecosystem insight – we will need a framework which allows flexibility in the data and 
models applied, but still has uniting standards that ensure approaches are interoperable and 
comparable. As a central component of this, we propose the need for consistent ‘baselines’96 
to compare current ecosystem and biodiversity values against. 

ESTABLISHING GLOBAL BASELINES 
If we do not apply a baseline, a global layer which tells us the original ecosystem and 
biodiversity site value, what we’re effectively doing is focusing on any impacts after the 1980s. 
This is when the satellite imagery record began, and in most cases, due to data quality, 
we’d be only assigning destructive impact post 1990, if not 2000, when many key geospatial 
observational data products started in earnest. 

So, which is the right year?  

If we set a date, perhaps one which works for the data available, we’re effectively determining 
that any identifiable impacts, such as major habitat loss, before that date are non-assignable. 
This creates a range of problems. First, it is aggressively unjust – it suggests that those nations 
(often the developed nations) which had already destroyed many of their environmental assets 
prior to the 1980s are free to use their cleared lands as they wish for economic advantage, 
whereas those who had not (often developing nations) will have any future impact assigned to 
their ‘environmental performance’. 

Second, failure to capture historic impact will create biases in assessment of those sectors, 
companies and supply chains which are within areas cleared prior to a feasible date of 
measurement. As we move towards estimating the ecosystem and biodiversity impact 
of companies, supply chains, soft commodities, etc., against each other (peer-to-peer 
comparison), factoring this original cost will be essential. Finally, from a planetary management 
perspective, the Earth’s systems do not make any such temporal distinction – any ecosystem 
loss or degradation counts within the local, regional and global system.

The central issue with establishing baselines is that species distributions and ecosystem 
extent have been changing both naturally and by humanity’s influence for thousands of years.97 
For example. England’s anthropogenically-driven forest loss is now thought to have emerged, 
significantly, over a thousand years ago.98 As a result, we lack granular global data for how 
biodiversity was previously arranged. One solution to this is to step away from current land 
cover and species range approaches for defining current biodiversity and ecoregion extent, 
and instead focus on quantitative variables that predict biodiversity (See Page 70). Although 
not conceptually critical, we suggest a theorical historic baseline of 1500AD, as this is the 
baseline used for assessing species extinctions within the IUCN Red List. 

Within this document we propose a possible approach to this not as the solution, or as a 
novel development, but to encourage debate and others to rapidly develop ‘Global Baselines’ 
for geospatial ESG application. The reason is twofold: first, the development of robust 
baselines will take significant collaboration and wide agreement, and will require scientific 
peer review. Second, since the geospatial approach is data-agnostic, we can and should 
encourage multiple baselines. From a data perspective, the only requirement is that each has 
an identifiable name, and that is included in end results (e.g. ‘baseline V2 applied’). Baselines 
can be updated, and users will be able to select the baseline they consider the most robust 
for their needs. 

Inevitably, over time, a small number of baselines will emerge as the most authoritative, 
and it’s likely they will have a high degree of consistency between them. 

CONSIDERATIONS FOR BASELINES 
Here we outline one potential way forward to developing a global baseline, to catalyse debate. 
For geospatial ESG applications, ideally, we need a high-resolution global layer (10m). To 
develop such a product, it is first useful to consider the patterns that govern the global 
distribution of biodiversity. 

GLOBAL BIODIVERSITY DISTRIBUTION 
For over 200 years, ecologists and biogeographers have struggled with the question, What 
determines the global distribution of biodiversity?99 

Entire fields of research, thousands of papers, have been dedicated to understanding the 
spatial distribution of biodiversity, often as measured by numbers of species in an area 
(species richness). While the field is complex and no consensus has yet been reached, it is 
enough here to point out the general and well-documented patterns, the known relationships 
between biodiversity and physical variables (Figure 27). It is important to note that we are not 
interested in why these patterns exist, as much of the research is focused on, but the value in 
using these known patterns to predict global patterns of ‘pre-human impact’ biodiversity.
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Very simplistically, some key factors are:

• Area – as area increases, biodiversity increases: the larger the area (land or sea), the greater the 
opportunities to support species richness and speciation.

• Latitude – the increase in species diversity from the poles to the equator has long been well 
documented, referred to as the latitudinal diversity gradient (LDG).100 Hillebrand’s 2004 meta-study 
of 600 studies101 showed that species richness increases towards the equator but that the trend is 
stronger regionally than locally, and although the trend does not differ between northern and southern 
hemispheres, it is asymmetric, not quite aligning to the equator. 

• Elevation – species diversity decreases with increase in elevation. 

• Rainfall – as rainfall increases, biodiversity increases.

VALUE OF EXISTING PRODUCTS 
There are many differing approaches, already achieved, that might be relevant to developing 
global baselines for geospatial ESG applications. For example, aggregated species range 
maps have long played a role in ecology, and today there are multiple data products, defining 
areas of interest such as global biodiversity richness107,108 (e.g. number of species per km2) or 
defining the original extent of ecosystem and biome ranges and conditions (Figure 28).109

Figure 27 – From Gaston, 2000 – graphs showing spatial distribution patterns in species richness. a, Species–
area relationship: earthworms in areas ranging from 100m2 to >500,000km2 across Europe102. b, Species–latitude 
relationship: birds in grid cells (~ 611,000km2) across the New World103. c, Relationship between local and 
regional richness: lacustrine fish in North America (orange circles, large lakes; blue circles, small lakes)104. d, 
Species–elevation relationship: bats in Manu National Park & Biosphere Reserve, Peru105. e, Species–precipitation 
relationship: woody plants in grid cells (20,000km2) in southern Africa106.

Figure 28 – From Dinerstein, et al., 2017110. 846 global ecoregions nested within 14 terrestrial biomes. 

Such area definitions can be used to estimate the original extent of species richness 
or the original extent of varying types of ecosystems and their traits and, importantly 
for conservation purposes, used to assess the extent of remaining habitat within these 
regions. Any existing data product can potentially be integrated with other data, or 
approaches, to refine insight. 
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BOX 5 – DEVELOPING A BASELINE FOR BRAZIL 
For geospatial ESG applications, we need create one or 
multiple historic points of reference, either on the original 
‘biodiversity’ values for a given area (e.g. richness, 
abundance) and/or the original ecosystem present and 
its associated values (e.g. habitat type, biomass, species 
richness, abiotic uniqueness, etc.). These insights can be 
arranged at a global scale or normalized within a given area 
such as an ecoregion or biome – or potentially a water basin, 
to align to the IBLG approach.

To illustrate the concept, we estimate Brazil’s abiotic 
uniqueness. Here using ArcGIS Pro 3.0.2, we took a 
Digital Elevation Model at 250m resolution and defined the 
uniqueness of the physical elevation, slope and aspect 
within fixed range categories. We then compiled these 
three variables together to give us the ‘physical elevation 
uniqueness’ for every cell (Figure 29). 

Using the same approach we defined the ‘climatic uniqueness’ of each cell according to its rainfall and temperature for 
Brazil (Figure 30). Here we only consider two variables, more can and should be considered. 
 
This provides only an outline of the concept, and many more variables (e.g. freshwater) need to be considered and applied 
intelligently. For now, we can integrate these simplistic measures of the ‘climatic’ and ‘physical’ uniqueness of Brazil (Figure 
29 and 30) and use these values alongside biodiversity or ecosystem data, or modelled against the global biodiversity 
distribution patterns (See Page 70). Such an approach should almost certainly not be conducted on a national scale but at 
the biome, ecoregion or water basin and sub-basin levels, as from a biodiversity perspective, the uniqueness of a cell value 
is mostly only relevant to the surrounding ecosystem. For example, high elevation in the south of Brazil is less relevant to 
Amazonian biodiversity distribution – where localized unique climatic or physical characteristics are likely to offer habitat 
niches and contain irregular biodiversity (Figure 31).   

Figure 29 – The 
uniqueness of each cell 
according to elevation, 
slope and aspect, 
within Brazil. 

Figure 30 – Combined together, the uniqueness of each cell according 
to rainfall and average annual temperature, within Brazil.

Figure 31 – A rough approximation of the 
climatic and physical uniqueness of Brazil; 
an approach which could be used to infer 
the potential biodiversity and ecosystem 
uniqueness of a given cell and converted into 
biodiversity richness by integrating global 
biodiversity distribution models.

The key point here is that the development 
of robust baselines for geospatial ESG 
application is possible with existing data, 
where high-resolution Digital Elevation 
Models (DEM) and data on other abiotic 
and biotic variables are available. Of 
course, results can be compared back 
to actual biodiversity data and iteratively 
developed. Indeed, there are existing 
and ongoing work programmes and 
organizations (GEO-BON111, Half-Earth 
Project Maps112, Nature Serve USA Map 
of Biodiversity Importance113) developing 
solutions, or alternative solutions in 
this space or related areas, that could 
potentially be utilized. 

What must be stressed is that the 
‘conservation community’ must 
collaborate and agree on what 
product/s should be used as global 
biodiversity baselines for geospatial 
ESG applications. Total consensus is 
not necessary, multiple products can 
be used, including site specific and 
regional baselines  – however, we need 
at least one robust, widely accepted 
global baseline for real-world use. 
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ENVIRONMENTAL CONTEXT 
Within the IBLG area delineations it is important not just to define the baseline and impacts occurring 
within given area delineations but also the environmental variables present and any changes over 
time. These can be simplistic measures, such as in which biome the asset is located (e.g. Amazon 
Basin, Temperate Forest) or SRS insight, such as extent of forest cover or mangroves, or even more 
complex measures only recently possible with cutting edge SRS (e.g. structural biomass). 

There are literally thousands of potential observational datasets which could be applied to provide 
‘environmental context’ to a given asset. Since our approach is data- and model-agnostic, there is 
no definition of which should be applied or a limit on the number of datasets applied; however, it 
seems likely that ‘less is more’, at least initially, where it will be easier to benchmark. In many cases, 
an effective shortlist of the most robust, regularly updated products is emerging organically: due to 
data consistency, availability and accuracy, we repeatedly see the same ‘nature-related’ geospatial 
datasets applied within financial, ESG-related applications. 

That said, as we move forward, many of these datasets would benefit from improved data cadence 
and resolutions to improve geospatial ESG insight (See Page 47).

DIVISION OF IMPACT 
Ecosystems face a vast range of impacts.114 Various frameworks and impact classification schemes 
have emerged to provide structure and insight, many built from the IUCN Threat Classification Scheme, 
such as that used in ENCORE. These are of course useful; below are ENCORE impact drivers:115  

• Disturbances – (noise, light pollution) 

• Freshwater ecosystem use – (occupation, use of freshwater habitats)

• GHG emissions – (CO2, CH4, N2O, SF6, HFCs, PFCs, etc.)

• Marine ecosystem use – (occupation of marine, area of aquaculture)

• Non-GHG air pollutants – (PM2.5, PM10, VOCs, NOx, SO2, CO), etc.

• Other resource use – (mineral extraction, wild-caught fish) 

• Soil pollutants – (volume of waste matter discharged and retained in soil over a given period)

• Solid waste – (waste by classification (e.g. non-hazardous, hazardous, and radioactive), by specific 
material constituents (e.g. lead, plastic), or by disposal method (e.g. landfill, incineration, recycling, 
specialist processing)

• Terrestrial ecosystem use – (occupation of terrestrial, area of agriculture by type, area of forest 
plantation by type, area of open cast mine by type, etc.)

• Water pollutants – (nitrates, phosphates, heavy metals, chemicals, etc.)

• Water use – (volume of groundwater consumed, volume of surface water consumed, etc.).

It is important to note a distinction here: natural events (e.g. earthquake, volcanic eruption) can also 
cause significant ecosystem and biodiversity impacts. As we look to assign impact to specific assets, 
it may in certain cases become important to differentiate these: a farmer may not be responsible, nor 
the decision maker, on whether a large area of woodland is lost within their property to a landslide, 
natural wildfire, storm damage, etc.116 Determining responsibility as to whether such natural activities 
are ‘an act of god’ or the results of human activity or mismanagement is a challenge.

As a starting point to simply the impact equation, we suggest the concept of dividing all 
ecosystem impacts (natural or human-driven) into two types, ‘direct’ and ‘indirect’.

DIRECT IMPACTS117

Direct impacts are the permanent (5+ years) loss of habitat, such as felling a forest, slash 
and burn agriculture, deliberately burning down shrubland, bulldozing for construction, mining 
– anything which for the immediate future removes the prior existing habitat. It could be a small 
area of the ecosystem (1ha out of 10000ha), or it could be large area. Such impacts are often 
easily detectable by SRS and so are often easier to detect, scale and assign within the IBL, (i.e. 
the mine cleared this much habitat for the mine, and this area of habitat for its access road).

Direct impacts, while varied in scale and consequence, are arguably from a technical data 
perspective the simplest part of the ‘biodiversity’ data challenge to get right, being some of the 
most easily measured from ex-situ data. However, these impacts tend to occur at the very end of 
supply chains, often in assets held by non-listed actors, in the primary industries. Consequently, 
inclusion of supply chains assets, is challenging but vital to ensure a more accurate estimation of 
high tier sectors impact (See Page 38).  

INDIRECT IMPACTS
Indirect impacts are far less straightforward but vital in understanding the holistic nature-related 
impact of an asset. An indirect impact is any impact that, without significant habitat 
destruction, limits or lowers ecosystem condition. They are many different types, and they 
can cascade silently through an otherwise healthy-looking ecosystem. For example, heavy 
metal pollution seeping into waterways causing reduction in river dolphins’ breeding success. 
Examples of potentially reductive impacts include over-extraction of freshwater, noise pollution, 
introduction of invasive species, poaching, bush meat hunting, tourism, fragmentation, disease, 
pesticides, oil spills, shipping traffic or globally overarching impacts such as air pollution, climate 
change and ocean acidification.  

Indirect impacts are incredibly complex, as outlined in Part One of this paper, varying in realised 
impact according to the specific impact event and specific ecosystem in question. Many of them 
cannot be detected via ex-situ data solutions, requiring detailed in-situ ground, soil, water, air 
and species sampling and long-term research. 

For example, illegal gold mining in the Amazon, which uses mercury in the gold purification 
process, creates mercury pollution which accumulates in the landscape and food webs.118 It’s 
thought that 15% of the region’s gold comes from illegal mines, and the volumes of pollution 
this generates are not trivial. Mercury, highly toxic, contaminates plants and animals119, known to 
lead to reduced reproductive success and increased mortality.120 In a study of catfish, 97% were 
found with ‘high’ levels of mercury – on average, five times higher than recommended levels 
for human consumption.121 Annually across the region, it is estimated that 130,000–220,000 
healthy human lives are lost due to disability induced by moderate or chronic metallic mercury 
intoxication.122 The nightmare that is mercury pollution cannot be overstated: it is a volatile 
chemical that does not disintegrate over time – often pollution is irreversible and difficult to 
contain.123 Halfway around the world, in the backcountry of New Zealand, a micro-scale pollution 
issue is causing trouble for one species. Lead pollution is a threat to the Kea, an endangered 
parrot. Thought to be attracted to the metal’s sweet taste, the birds find, and chew lead fixtures 
introduced into their habitat, on mountain huts, mines, etc., It has become present in their 
blood, causing a range of health issues and mortality,124 in part – amongst other threats, such as 
invasive species – limiting their survivability. 

These are two examples of indirect (reductive) impacts of different magnitudes – silent impacts 
that can go unseen within an otherwise ‘healthy-looking’ ecosystem. While it might be possible 
to create proxy metrics for mercury pollution (e.g. extent of illegal mining sites), understanding 
the indirect, reductive impacts of mercury pollution on biodiversity and ecosystem condition, 
and how it exacerbates other issues, will require long-term and detailed in-situ field study. While 
in the case of the Kea, no ex-situ, SRS-driven solution can capture and report such a hyper-
specific indirect impact, nor may various such hyper-niche topics be justifiable for inclusion. As 
we’ll outline on Page 94, to begin to surmount such specificity issues, we envision an ‘app store 
model’, where users, or machine rationalisation, will be able to select from thousands of third-
party-developed datasets and models to draw, generate or create specific estimates of direct 
and indirect impacts from specific asset types operating within very specific ecosystems. 
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Above - Maxar WorldView-2 satellite image 
showing mining barges on Pure River, 
Colombia, on June 2, 2021.Satellite image 
© 2022 Maxar Technologies.

(See: Hettler, B. (2022)

Gold mining barge in the Tapajós River, Juruena National Park - Maués, Brazil 
© Andre Dib / WWF-Brazil
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SUPPLY CHAINS

Figure 33 – Simple diagram outlining how supply chains can be assessed within the IBLG geospatial ESG 
approach, potentially including transportation insight. 

ADDITIONAL VARIABLES 
REFLECTIONS ON SUPPLY CHAIN AND TRANSPORTATION (INFRASTRUCTURE) IMPACTS
Infrastructure assets (e.g. railways, powerlines, undersea cables, roads, etc.) can be assessed as 
standard within the geospatial ESG approach. However, transportation infrastructure has an additional 
application within geospatial ESG – providing insight into the biodiversity and ecosystem implications of 
the movement of goods between assets for supply chain assessments. 

As we connect supply chains together, it becomes important to factor in the ecosystem and biodiversity 
implications of the infrastructure (e.g. roads, rail, ports, airports) used to transport goods, in terms of 
shortest route distance.125 Rather than running an assessment for each unique supply chain, it seems 
logical to simply define the biodiversity and ecosystem metrics (e.g. habitat loss per km, fragmentation, 
wilderness exposure, etc.,) for every road, railway, and transportation hub globally. These metrics can 
then be immediately aggregated for any given route, to provide insight into the overall ‘biodiversity 
impact’. Key variables, such as if the first connecting node is unique (e.g. a road built solely for one 
asset, e.g. a mine access road) can be highlighted; these are important – often cutting through 
previously untouched areas. This approach could follow the IBLG methods, focusing on the internal and 
bordering impacts of a linear infrastructure (See Page 62). However, it seems probable specific metrics 
and methods will need to be developed for defining the biodiversity and ecosystem ‘costs’ associated 
with different types of linear infrastructure. 

Interestingly this process has a parallel where insurers have defined extreme weather vulnerability 
(based on historic wind, rainfall, etc., natural hazard data, and climate change data) of linear 
infrastructure, to define specific assets’ vulnerability. 

Figure 32 – Illustration of the 
concept of developing global 
scoring for transportation routes, 
in this case roads, allowing easy 
aggregation for any given supply 
chain transportation route. Here we 
look at the combined IB impacts of 
‘protected area exposure’ of roads 
in South America. Of course, more 
complex, insightful approaches 
should be developed. 

Since there are robust, open datasets on linear infrastructure, an opportunity is present for the 
community to collaborate to agree on and create open global datasets on linear infrastructure’s 
‘biodiversity and ecosystem impacts’ for geospatial ESG applications. Again, consensus is not 
required; multiple products can be used – however, a widely accepted global standard dataset 
would most likely support adoption. 

Although not explored in detail in this paper, we should 
note that a geospatial ESG approach theoretically has no 
issue with the integration of geospatially derived supply 
chain insights, where each supplier’s asset/s can be 
assessed following the same method as for an owned asset. 
Essentially the hundreds, or maybe tens of thousands, of 
suppliers are assessed, and their values aggregated (Figure 
33). The distance between suppliers, and the transportation 
metrics can potentially also be included (See Page 78).  

The major challenge with supply chains is access to data, 
where even commercial providers have struggled to make 
headway within this space. Until detailed and accurate data 
can more readily be accessed, supply chains will remain 
problematic to factor into any ESG solution.  
Within this document, we make the case that secure one-
to-one data sharing offers the highest potential for FIs 
to gain access to supply chain data within the emerging 
geospatial ESG data ecosystem (See Page 102).

Asset/s (IBLG Scores)

Company (IBLG) Aggregation 

 Supply Chain(IBLG) Aggregation Scores

Transportation (IBLG) Scores
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UNITING COMPONENTS 
If we take an asset, the IBLG area divisions, baselines, environmental context, and 
observational data landscape condition insights, the direct and indirect impact divisions and 
a temporal component, we emerge with something like the following:

Baseline Measures Environmental Context Ecosystem Condition (Triangulation) Direct  Impacts Indirect Impacts
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1985 N/a

1986 N/a

… …

2000 q1

2000 q2

… …

2021 q1

2021 q2

2021 q3

2021 q4

2022 q1

2022 q2

2022 q3

2022 q4

… …

Figure 34 – Simple data-agnostic approach to standardising how we assess ecosystem and biodiversity impact for a 
specific asset, capturing original baseline values for historic and recent years and allowing comparison to recent changes 
detected via remote sensing satellites. We are, of course, not attempting to list specific direct or indirect metrics for asset 
classes but rather taking the approach of dividing the topic, via time, impact type and spatial dimension. 

A few points are useful to consider:

• Temporal Component – Any approach used must be able to consider impact over time. Here we loosely suggest from 
1985 onwards, aggregating results to quarters. Inevitably different metrics will have differing frequencies (some daily, 
others annually) driven by the technology, data product and the impact being assessed. 

 - Understanding when an impact occurred is important; first it gives the ability to track how specific impacts evolved,  
 providing an understanding of frequency of the impact/s. Second, it allows the correlation to temporal values, such as  
 changing vulnerabilities (e.g. breeding season) and ownership. Where ownership of assets changes over time, a current  
 owner may not be responsible for past impacts.  

• Fixed Area Definitions – We suggest the IBLG approach, but of course, any area division can be applied – including 
biome, regional and or sector specific delineations. Ideally, we would see wide use of the same area standards across the 
financial sector, to enable interoperability and comparison. 

• Baselines – Both historic (See Page 68) and actual baselines can be applied; here we show three in use, historic (1500AD), 
2000 and 2020. If assets were developed or altered post-2000 or 2020, these baselines give the advantage of more 
accurate comparison insight. Site specific or regional baselines could also be applied.

• Environmental Context – The use of internal (I) bordering (B) and landscape (L) area delineations offers insight into the 
context (and changing context over time), of the immediate and wider position of an asset and the shifting magnitude of its 
impact. This data arrangement has the benefit of linking closely to other topics, such as dependency.

• Landscape Condition – While we make no statement here as to which combination of metrics, or models, would be 
appropriate to provide insight into the ecological condition for a given biome, ecoregion or landscape, we provide two 
cases studies as examples of the approach (See Page 88). We expect this area of research to develop and refine as 
geospatial ESG methods are developed and as in-situ data products improve. 

• Direct and Indirect Impact/s – Here we have divided these impacts to align to the ex-situ data reality, where it is frequently 
more technical possible to capture direct impact, from ex-situ data. While of course indirect impacts, such as heavy metal 
pollution, have significant consequence on ecosystem condition, many cannot be captured well or at all by ex-situ technologies 
– suggesting the need for a wide range of data products and solutions to provide estimated, modelled or in-situ insight.  
 
No data solution can solve the biodiversity puzzle alone. Geospatial ESG approaches cannot provide insight into all aspects or 
highly granular detail into specific components of ecosystem condition. However, they do provide a highly valuable additional 
lens that can be combined with other data approaches to add to other ESG approaches.

• Infrastructure and Supply Chains – To keep things simple for now, we have not included supply chain and route 
transportation metrics within the framework, but essentially, each supply chain asset is assessed in the same way as any 
other asset (See Page 78). Route planning remains an area for further research, where it is not yet clear how to address 
shipping and aviation routes; this is reliant, in part, on what supply chain data become available.  

• Data- and Model-Agonistic – As stressed throughout this document, this approach is entirely data- and model-agnostic. 
Only a consistent framework is required: here we propose the use of the same entity identifiers, baselines and environmental 
context; the same area delineations (IBLG); the distinction between direct and indirect (destructive and reductive) impacts; etc.

 
Here we describe these concepts as a starting point, to aid discussion and debate. It should be noted that from a conservation 
science perspective, there are technical inconsistencies and issues in the insights generated via such an approach. However, 
it is important to consider these shortfalls in the light of the application, and ask whether such methods, despite their 
limitations, offer improved value to the financial sector. 

In the next section, we explore the issue of quantifying biodiversity and ecosystem impact insights. 
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KEY POINTS
• A single unit of measurement is often considered desirable 

for ‘biodiversity’ or ‘nature-related’ impact as it simplifies 
understanding. Within the climate space, the unit used is often 
a ton of carbon, a fixed unit of measurement to which any GHG 
emission issue can be converted. 

• Within the biodiversity space there is no straightforward 
equivalent – there is no ton or inch of ‘biodiversity’. Despite this 
there have been efforts to produce a single measurement unit 
to define ‘biodiversity’ impact. 

• For nature-related geospatial ESG insight, we suggest that the 
advantage in doing so is heavily outweighed by the technical 
difficulty, the large potential for error it creates and confusion 
around what the value reports. 

• Instead, we recommend reporting direct measurements for any 
given metric, applying peer-to-peer comparison. 

• Since geospatial ESG methods are able to consistently screen 
the assets of entire sectors, we suggest using percentiles, 
direct or adjusted to landscape condition, and/or biodiversity 
values (e.g. rarity, richness) or user weighted values as a simple 
means to compare assets or companies across differing 
metrics. This enables the simple identification of which 
companies have multiple assets flagged within extremely high 
or low percentiles for any given set of metrics. 

• As touched upon throughout the paper, the impact of any given 
asset varies with the current resilience of the ecosystem. Here 
we outline in detail how the magnitude of IBLG impacts can 
potentially be adjusted to Landscape condition insight. These 
weighted adjustments can of course be applied within peer-to-
peer comparisons.

PART 5 
QUANTIFYING BIODIVERSITY 
AND ECOSYSTEM IMPACT

Maxar WorldView-2 satellite image showing MV Wakashio and tugs, on August 15, 2020. 
Satellite image © 2022 Maxar Technologies.
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QUANTIFYING BIODIVERSITY AND ECOSYSTEM IMPACT

Figure 35 – Table illustrating the challenges in converting differing units of measurement into a consistent 
quantified ‘biodiversity/ecosystem unit’

In this section, we will look at the trade-offs in quantification, and suggest potential solutions. 

Impact Ex-Situ Metric Available? Unit of Measurement Conversion to Biodiversity / 
Ecosystem Impact

Direct Impact/s

1. Forest Loss Sq KM

(?)

Peer to Peer Ratios/ 
Comparison 

2. Grassland Loss Sq KM

3. Etc…

Indirect Impact/s

1. Freshwater use (Groundwater) Liters

(?)

2. Light Pollution Candela per Sq M

3. Noise Pollution Deci Bels (dB)

4. Water Pollution (Chemical) PPM

5. Water Pollution (Heavy Metals) PPM

6. Air Pollution (PM2.5) PPM

7. Air Pollution (PM10) PPM

8. Air Pollution (VOCs) PPM

9. GHG Emissions (CO2) PPM

10. GHG Emissions (CH4) PPM

11. Fertilizer (Nitrogen) Runoff Kg/Ha / PPM

12. Soil Contamination (Lead)
μg/g (micrograms per gram), mg/kg, or 

ppm (parts per million)

13. Invasive Species ?

14. Etc… 

Across insight into ‘biodiversity’ and ‘ecosystem 
condition’ in general, a range of measurement units will 
be reported capturing differing variables. Frequently 
this will be an area value (e.g. km2), but it can also be 
categorical (e.g. ecosystem type, species rarity), a range 
of statistics (e.g. mean, min, max, STD, etc.,) and in 
different units (km, kg, PPM, etc.). 

The question that arises is how to convert these values 
into quantifiable comparable units of ‘ecosystem 
condition’ and or ‘biodiversity’ values. Within the climate 
change data arena, the issue is simple: it is possible to 
covert or report results in universal accepted quantified 
units, (e.g. a ton of carbon). Within the biodiversity 
space the issue is less straightforward – there is no inch, 
kilogram or ton of ecosystem or ‘biodiversity’. We cannot 
talk of 5.5 ‘tons of ecosystem lost’.

There is an increasing body of work which has and is 
attempting to create ‘‘biodiversity measurement units’. 
For example, the UK government is working towards 
developing a ‘Biodiversity Metric’126 designed to 
calculate, with in-situ data, the biodiversity net gain within 
given areas as required under the 2021 Environment Act 
and within future legislation, giving a site baseline and 
forecast future biodiversity values. 

More broadly, other efforts could be considered as attempts 
to move towards a systematic unit for measurement for 
‘biodiversity’, for example:  

• Mean Species Abundance (MSA) is a measure of the 
current abundance of species relative to their abundance 
in the equivalent undisturbed ecosystem.  Ranging from 
0 and 1, higher scores suggest greater local biodiversity 
intactness. Derived from the GLOBIO model,127 it is an 
accumulated function of six human pressures (land use, 
road disturbance, fragmentation, hunting, atmospheric 
nitrogen deposition and climate change); the core model 
considers pressure–impact relationships.

• Potentially Disappeared Fraction of Species (PDF) is a 
measure of the percentage of species lost in 1 m2 (land) or 1 
m3 (water) in one year in a specific area due to environmental 
pressures. It is derived from the ReciPe model, originated 
from the pharmaceutical sector – where the potential 
environmental toxicity of a substance is expressed as a 
fraction of the species that potentially disappears when the 
substance is introduced into a given environment.  

Within geospatial ESG applications, it’s important to 
consider the technical challenges in converting impact into a 
biodiversity or ecosystem impact against the advantages in 
doing so for the common ESG use cases. 

DIRECT IMPACTS
Direct impacts are initially simple to quantify in a consistent unit of measurement: the area of 
environmental asset lost, relative to spatial footprint (e.g. per km2) or production (e.g. per ton). 
These can be additionally expressed, if desired or useful, as ratios (against remaining habitat 
with the landscape, ecoregion), trends over time, etc. 

Many actors will wish to adjust direct impact results to factor in the importance of other 
variables, such as biodiversity richness, endangered species, etc.  Such value adjustments, 
defining which environmental assets are more ‘important’ than an equal area of another, move 
into the subjective. Since the geospatial ESG approach is data- and model-agnostic, third 
parties can develop any weighting or adjustment required. 

INDIRECT IMPACTS
Indirect impacts are more varied and complex to quantify, covering a huge range of variables 
and units of measurement, which are difficult conceptually to factor – what, for example, does 
it mean if 10ha of forestry plantation is cut down in one part of the world and 1,000 litres of 
groundwater extracted in another? What was each’s ‘biodiversity’ and ecosystem impact, and 
how can we combine hundreds of such measures across vastly differing ecosystems? 

Considering current methodological limits, it is arguably more practical, understandable and 
accurate to simply compare measurements peer to peer – adjusting for location, ecoregion, 
spatial size or production of the asset – than to attempt to translate these results directly 
into terms of ‘biodiversity units’. However, because different sectors will need to use differing 
metrics, (e.g. oil and gas can be assessed for marine oil spills; cotton farming cannot), it is 
necessary to find a means to compare differing metrics. Otherwise, it will become difficult to 
compare companies from different sectors which have limited overlap in the metrics applied 
(e.g. a clothing brand vs. a mining company). 

Since, via the geospatial approach, we can (asset data dependent) assess all assets within a 
sector, it is possible to determine the percentile range for each metric directly and adjusted 
(Figure 36). For example, which palm oil plantation is within the 99th percentile for deforestation 
per km2 within the last five years? Or which real estate assets cleared more than average 
biomass values per km2, adjusted for ecoregion ‘biodiversity richness’. 

Company X Metric 1 – Habitat Loss per km2 

Percentile 
Metric 2 – Habitat Loss per km2 Percentile 

Adjusted for Ecoregion Richness
Etc. 

Mine 1 50.5 46.4

Mine 2 45.6 38.1

Mine 3 88.2 99.2

…

Figure 36 – Illustration of metrics for a mining company tracking its three mines, reporting their relative 
percentile compared to all other mines. 

The advantage of percentiles is that they help inform which assets are outliers compared to 
their peers, in a format which can be consistently compared again any other metric. Again, 
metrics can be adjusted to account for biome richness, social variables, production, spatial 
footprint, etc. Additionally, ‘red flags’ (0/1) can be assigned for compliance breaks, such as if 
the asset is operating within ‘no go’ sites or sites of extreme value (e.g. World Heritage Site).

It is important to note that the approach of geospatial ESG outlined here is data- and 
model-agnostic. More intelligent models – spatiotemporal spheres of influence – can 
be built around these inputs, to adjust for ecoregion sensitivity, biodiversity richness 
and landscape ecological condition.  Or if the data and science develop, models can be 
produced which include a translation into a single ‘biodiversity’ unit. However, in the short-
term, we’d argue, the simple method of direct peer-to-peer comparison is a viable solution.
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Figure 37 – Simple graphic illustrating the concept that impact is not a fixed value but changes in magnitude 
according to biodiversity and ecosystem condition/resilience. The green line is species, ecosystem, impact, 
temporal, etc., specific and will vary in form to each unique situation.

FACTORING IN ‘LANDSCAPE’ RESILIENCE
It is, of course, necessary to adjust results to account for simple variables, such as the spatial 
footprint of the asset, production volumes, regional biodiversity richness, etc. It is also vital, 
however, to apply the data available in ways which maximize insight – and importantly to find ways 
to adjust the weighted magnitude of localized impacts to account for the changing resilience of 
environmental assets present across the landscape. 

Here we look in detail at the concept of using Landscapes (L) – we suggest water basins – to 
provide improved insight into metrics which are not possible at granular scale and to define 
landscape condition/resilience, which can then be used to weight/adjust IB impacts. 
This approach serves four important functions:

• Often within small areas, such as within property boundaries, many indirect impacts are 
difficult to measure via ex-situ SRS solutions but can be estimated across larger areas. 

• For example, mercury pollution within a given tributary or area of the Amazon can be 
estimated by tracking via SRS the number of mining barges and the changing extent under 
illegal mining operations.128 

• Landscape-wide environmental extent and condition indicators are likely to be useful to 
adjust the magnitude of localized impacts. For example, if the extent of native 
forest cover within a landscape dramatically reduces (90% loss), then the resilience and the 
significance of any impact to any small areas of forest within a property boundary within that 
landscape also changes. 

• Ecosystems are large and often interact with hundreds or thousands of assets. To avoid issues 
around the tragedy of the commons and incentivize all actors to address issues within their 
landscapes of operation, the indicators describing the overall health of the landscape need to be 
assigned to all actors. This will place greater attention on poorly performing actors, as ultimately, 
in the long run, irresponsible actors are likely to cost society and the economy. 

• When asset data or exact supplier is unavailable, often it is possible to locate the supplier 
or asset to a country, state, municipality, etc. An area-based metric derived from landscape 
methods and/or scores can then provide insight into a very approximate likelihood of 
environmental impact. 

Before we look in detail at two potential examples of landscape indicators – river 
environmental flows and forest temporal autocorrelation – we first explore why this is needed.
  

THE RATIONALE FOR LANDSCAPE INSIGHT FOR IB IMPACT ADJUSTMENT 
The Great Auk was once common across the north Atlantic coastline; flightless and vulnerable, they 
were hunted for their down, then as their rarity increased for their skins and eggs for collections. 
Their populations plummeted from the 16th to the 18th century. The last pair found were killed on 
3rd July 1844, on the request of a merchant who wanted the rare bird skins to sell for collections.129 
History records the names of the men who killed, if not the last, but some of the very last Great Auks. 

The Great Auk extinction has a parallel for us now, in understanding landscape impact. The final 
blow, the coup de grâce, the final loss of a section of habitat or a species, is dramatic. It gets 
our attention and our blame. It tugs at the heart. But of course, it would be foolish to blame the 
extinction of a once-widespread species on a few men and one action. The extinction was caused 
by endless repeated actions by tens of thousands of individuals over hundreds of years. And so it is 
with all impacts to the natural world. In a healthy landscape, with robust ecosystems, minor impacts 
are likely to be absorbed and recovered from without issue. As impacts continue and mount, as 
habitat declines, each additional impact becomes harder to reverse and recover from, until a tipping 
point is reached, and recovery is impossible (Figure 37). 

As with the Great Auk, initially impacts can be absorbed; but as impacts continue, resilience 
decreases within the ecosystem (or species), and the magnitude of the impact increases as 
recovery becomes less and less certain, until collapse is certain (Figure 37). 
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The localized, regional, global and cumulative impacts 
of an asset then are not static values but change 
with the condition of the biodiversity and ecosystem 
present. As biodiversity and ecosystem health 
decrease, due to impact within a landscape, its ability 
to recover reduces, and a point is reached where 
degradation and loss are higher than recovery and, if 
continued, will force the ecosystem into collapse. As a 
proxy measure, we propose to use water basins130  
(See Page 88) to provide wider ‘landscape insight’ 
to adjust the IB impact weighting of assets to 
approximately account to changes in resiliency.  

Photo: Great Auks, birds which were once common, are 
now extinct, changing the arrangements of cogs within the 
marine ecosystems they were once a factor within.

Specimen No. 8 and replica egg in the Kelvingrove Art 
Gallery and Museum, Glasgow.
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LANDSCAPE METRICS RIVER CONDITION AS A PROXY MEASURE FOR DEFINING LANDSCAPE CONDITION
Authors: David Tickner, Chief Adviser, Rivers – WWF-UK and Conor Linstead, Freshwater Specialist – WWF-UK 

Figure 38 – The concept of area-consistent landscape level ‘indicators’ produced regularly and consistently week on week, 
month on month tracking back to the 1980s to provide insight on what is occurring within each water basin. This is vital for 
1) wider proxy measures of impacts difficult to measure at the fine scale, 2) situational context to adjust the magnitude of IB 
impact and 3) to attempt to address issues around the tragedy of the commons.

Regional Indicators 
(Water Basins – Level 6)

e.g., relative density of 
mercury river barges

Global Indicators 
(Water Basins – Level 6)

e.g., forest extent, forest 
condition kNVDI, river 
e-flow inconsistency 

On Page 24, we discussed using ex-situ data to provide insight 
into ecosystem condition, noting that it is extremely challenging 
and almost always necessary to us in-situ data to aid insight. 
Further, we noted that there is no widely agreed method for 
measuring the ecosystem, or ‘landscape ecological integrity’ 
of related areas with ex-situ data alone. Consequently, the 
question for geospatial ESG then, is what if any insights could 
be gained on estimating ‘landscape condition’?

If we accept that we cannot easily define ‘ecosystem condition’ 
via ex-situ data alone at this time, we can nevertheless look 
at what proxy indicators we could use that might be accurate 
enough for geospatial ESG applications. 

One potential way forward is to select a key set of natural 
assets within a landscape (e.g. forests, rivers, wetlands) 
and develop methods of estimating their condition, at 
a high-level, where it might be possible to triangulate 
observational datasets together to give rough insight (Figure 
38). Of course, it is important to state that it is necessary to 
develop indicators of both global and regional application, 
as in many cases it will be necessary for tailored solutions 
to provide insight specific to ecosystems and impacts 
not found elsewhere (e.g. global forest loss and regional 
mercury pollution in the Amazon).  

On the next pages, we explore two such examples; however, caution needs to be applied, as while in most cases 
these metrics are likely to provide some form of useful estimation, further research is required to refine benchmarks 
and iterate these approaches (e.g. metric correlation to ecological processes, addressing sampling errors, 
quantifying relationships and transferability of metrics, etc.) in order to know what exactly these outputs are reporting 
and the various complications. Interestingly as the field of geospatial ESG develops, with increased research focus 
and access to emerging data and technologies (e.g. eDNA, landscape audio) and improved in-situ data aggregation 
and management, it seems inevitable that progress will be made on landscape condition insight. And indeed, 
ongoing research, such as GEO BON Essential Biodiversity Variables, is making progress. 

Indeed, it seems likely, as the climate and biodiversity challenges deepen, that we will move into ‘landscape 
data catalogue’ metrics/statistics being reported as critical data points, across tens of indicators at high 
frequency (weekly, monthly), as we see now with key economic data points like GDP.  For now, it is important 
to highlight this issue as a vital area for research and development. 

In the next section, we look at two examples of potential estimates of landscape condition. 

Rivers and related freshwater habitats such as lakes and 
wetlands host globally important biodiversity, including 
charismatic species such as otters and river dolphins, a 
wide array of specialist plants and invertebrates, and more 
fish species than are found in the oceans. This biodiversity 
is vanishing more than twice as fast as the biodiversity 
on land or in the sea.131 In response, scientists and 
campaigners have set out an Emergency Recovery Plan 
for freshwater biodiversity.132 As well as helping financial 
institutions to understand risks associated with their 
investments, better global-scale monitoring – combined 
with monitoring at national, river-basin and local scales – 
can help to track progress in implementing this Plan.

Threats to river health and biodiversity include alteration 
of river flows through abstraction of water for agricultural, 
industrial and domestic uses; pollution from a wide array of 
sources; invasive species; construction of dams and levees; 
over-fishing; and riverine mining of sand and gravel for the 
construction sector. Such threats can impact on biodiversity 
individually and cumulatively through multiple stressor 
effects. Changes in rainfall patterns and water temperatures 
due to climate change are increasingly a concern.

Rivers are also key biophysical features linking landscapes 
and connecting terrestrial habitats with coasts and oceans. 
Many of the threats to biodiversity in rivers are driven at 
least partly by changes in land use. Thus, data on river 
health can provide clues to wider landscape condition.

River health data is often classified into water quantity/
hydrology, water quality, physical habitat and biological 
variables. Water quantity variables describe alteration 
of natural hydrological flow regimes (i.e. the extent to 
which natural spatial and temporal patterns of river flows 
have been anthropogenically changed) and changes in 
water extent, e.g. in floodplain wetlands. Water quality 
parameters include water temperature, dissolved oxygen, 
biochemical oxygen demand (BOD, an indicator of 
microbial activity) and pollutants such as nutrients (e.g. 
nitrogen and phosphorous), suspended sediments, heavy 
metals and synthetic toxicants. Physical habitat includes 
longitudinal (upstream-downstream) and lateral (river-
floodplain) connectivity, physical features within rivers 
(e.g. islands, sandbars) and aquatic or riparian vegetation. 
Biological variables include macroinvertebrate diversity 
and abundance (a proxy for water quality), fish, non-native 
invasive species and primary productivity.

Several national and regional river programmes that 
combine in-situ, ex-situ and modelling approaches have 
been developed in recent years133 but currently there are 
challenges to effective, harmonized global-scale river health 
monitoring. Conceptually, the fact that rivers are essentially 
linear, flowing features means that indicators that track on 
river habitat quality by length or volume would be better 
than conventional area-based monitoring and metrics that 
are commonly used by the global conservation community. 

The narrow dimensions of small to medium-sized streams 
(which comprise much of the global river network), variability 
of river flows, and the physical properties of water also mean 
that SRS technologies have struggled to accurately monitor 
changes in flow regime or water levels at sufficient spatial and 
temporal resolution. However, initiatives such as the Surface 
Water and Ocean Topography (SWOT) project134 are likely to 
improve the situation, at least for larger rivers.

One indicator that can currently track global changes in 
river health effectively is the Connectivity Status Index.135 
The CSI considers five ‘pressure factors’ that represent 
the main human alterations to river connectivity: a) river 
fragmentation; b) flow regulation; c) sediment trapping; d) 
water consumption; and e) infrastructure development in 
riparian areas and floodplains. Proxy indicators for these 
components were informed by available global data and 
numerical model outputs and combined using a weighted 
overlay model. The CSI has been used for a number of 
purposes, including to map remaining free-flowing rivers 
worldwide and to assess the overlaps between protected 
areas and dam construction.136

Researchers are now developing pathways for improving 
global scale monitoring that build on lessons from national 
and regional schemes and indicators such as the CSI 137 and 
recent initiatives such as Global Water Watch138, funded by 
Google, are aiming to make available high resolution, near-
real-time water data using AI technologies. Global-scale 
monitoring approaches will inevitably rely significantly on ex-
situ approaches for the foreseeable future and technological 
advancements promise better tracking of changes in water 
quantity, water quality and physical habitat. Monitoring of 
biological indicators using SRS technologies is intrinsically 
difficult, with the exception of primary productivity, for 
which chlorophyll can be used as a limited proxy. However, 
scientists have begun to assemble global-scale data of 
biological variables from in-situ datasets139,and it’s possible 
that these could be combined with SRS data to provide better 
geospatial coverage.

From a landscape conservation and river health perspective, 
one particular need is to develop global monitoring of river 
flows. In many contexts, flows naturally change on a frequent 
– sometimes daily – basis. Anthropogenic changes to land 
use and infrastructure operations (e.g. flow releases from 
dams) have greatly affected such natural flow variation, 
normally to the detriment of aquatic ecosystems and 
biodiversity. A combination of ensemble modelling of natural 
or pre-industrial baseline flow regimes and near-real-time flow 
data (from SWOT data, for instance) could provide a global 
picture of human impacts on river flows. This could serve 
multiple purposes including risk assessments for financial 
investments in river basins that might be vulnerable to 
unsustainable water use. 
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FOREST CONDITION AS A PROXY MEASUREMENT 
FOR DEFINING LANDSCAPE CONDITION

Figure 39 – From Forzieri et al., 2022: global map of the temporal trend of TAC (δTAC); positive δTAC values imply a 
reduction in recovery rates and thus a decline in resilience, and vice versa for negative δTAC values. Such research 
suggests a possible way forward for developing landscape-scale forest resilience and condition insights.  

Forests can be analysed to provide insight into their own condition but also potentially 
insight into the wider landscape condition, where the sudden and rapid expansion of forest 
clearance, increases in artisanal mining, etc., is perhaps indictive of some other social or 
economic change. 

SRS, with the growth of optical, radar, lidar and high cadence data, has come a long way in 
recent decades in linking satellite data (spectral values) to ground truth data, to accurately 
quantify changes in forest characteristics (e.g. leaf area index, phenology, biomass, canopy 
gap fraction, taxonomic diversity, etc.) across the globe and over time. 

This research has potential application within geospatial ESG, as we attempt to understand 
forest ecology and condition at scale. At the most basic level, we can define via SRS outputs, 
the extent of the forest and any forest gain or loss, week by week. We can apply more complex 
methods for improved insight, for example understanding the native, non-native, primary or 
secondary forest, or other variables. 

To illustrate just one area of potential interest, researchers are exploring the concept of ‘forest 
resilience indictors’, methods to identify early indications of regime shifts. For example, Forzieri 
et al.140 have shown that tropical, arid and temperate forests (both managed and intact forests) 
are declining in resilience. Only the northern boreal forests seem to be bucking the trend, 
perhaps from a warmer climate and CO2 fertilization. The global consistency, with 23% of 
intact forest worldwide reported to have reached critical threshold of resilience, suggests the 
large-scale driver of climate change. 

Reduction in resilience is known to be linked to sudden declines in forest primary productivity. 
Lower resilience within a landscape suggests a lower capacity to overcome additional impacts 
and therefore an increase in the magnitude of any IB forest impacts. 
 
When an ecosystem begins to fail, it has been proposed that a loss in resilience can be 
detected from an increased temporal autocorrelation (TAC), reflecting a decline in the system’s 
ability to recover due to a critical slowing down (CSD) of system processes. Forzieri et al. 
estimated global forest CSD from a 1-lag TAC from SRS product kernel normalized difference 
vegetation index (kNVDI) as a proxy for ecosystem productivity. They compared the kNVDI in a 
three-year rolling window from 2000 to 2020, using a random forest regression model to filter 
out localized environmental factors, which might otherwise hide the resilience signal (Figure 39). 

Further research will be required to better understand the viability of outputs for geospatial 
ESG application. Arguably, however, this study is illustrative of the wider efforts within the 
remote sensing communities that are taking us closer to improved data products, capable of 
supporting geospatial ESG landscape condition indictors. 

A key development will be for the SRS community to realize that their outputs could be 
of significant value and application to the financial sector, if designed for purpose and 
arranged in a universally consistent format, applicable across geospatial ESG-driven 
methods and models. Here we suggest producing landscape metrics for water basins 
(See Page 68). 

REFLECTIONS ON QUANTIFYING BIODIVERSITY AND ECOSYSTEM IMPACT 
There is a temptation to be dissatisfied with the above – that it doesn’t quite get to 
the heart of the question. It doesn’t define in one single unit the ‘biodiversity’ impact of 
any given asset, or company or portfolio. Instead, it provides proxy insights such an asset’s 
association with habitat clearance, and effectively unrelated ‘environmental impact variables’ 
such as light pollution. It gives insight into ‘impact’ variables and less into actual ‘biodiversity 
and ecosystem condition’. 

The reality is that with the field just emerging, there is – as of yet – no clear ex-situ 
geospatially focused methodology as to how to define ‘ecosystem and biodiversity’ impact 
for any given asset class or within any given ecosystem As time goes on, we’d argue 
that the framework outlined allows the improved integration of in-situ data to allow more 
refined models exploring ecosystem condition and getting more into the granular detail of 
‘biodiversity’. 

However, let us reflect on that fact, that if we were able to do the very basics proposed 
here – defining every asset on Earth and its ownership, and links via supply chains within 
the economy, and applying observation data to provide insight into direct and indirect 
impacts – we would know significantly more than we currently do. We would know 
for the first time which assets were within or nearby to habitat clearance. We would know 
every company on earth that is engaged directly or via supply chains with assets impacting 
high value environmental assets, or legally designated areas. We’d have a nearly complete 
understanding of which supply chains were deforestation free and which weren’t. The 
list goes on and on. This would be a significant quantum leap forward in our current 
understanding. Of course, it would not provide a direct answer as to the true ‘biodiversity’ 
impact of these assets, factoring in cascading issues and hundreds of other complexities 
– but vitally, it begins to build a means, a framework and the data to get us closer to that 
objective, while still producing useful insight.    

The reality of our position is that within the next 12–24 months, no single team or even wide 
collaboration is going to resolve how to estimate for every given asset its actual ecosystem 
and biodiversity impact with ex-situ data alone. However, by pursuing the field – by 
normalizing and establishing the field; by setting out observational datasets, metrics and the 
approach; by building out a systematic data catalogue; by testing and building landscape 
condition methods – we will in time position ourselves to provide these more detailed 
answers. In short, we argue that instead of building more one-off platforms or solutions, 
we should apply the data available now to build the foundations of the approach. Building a 
robust data ecosystem will enable the development of a new sector of open and propriety 
third-party models and tools catalysing the field and leading to commercially applicable 
solutions (See Page 98). 

In the next section we explore how we might go about building the emerging field’s 
foundations, to produce and iterate ‘biodiversity and ecosystem’ insights.  
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PART 6 
MOVING FORWARD

KEY POINTS
• The current approach to biodiversity insight is user driven – a 

single flashlight in an ocean of darkness. Only when an FI 
focusses (via a specific standalone tool) on a specific asset 
or company does any insight come to light. The rest of the 
equation, the impact of other 99.99% of companies and their 
supply chains, however, remain in darkness. 

• Adapting and reusing the same approaches of the past, 
reshuffling the same isolated data and platforms, will not solve 
the biodiversity puzzle. We need a new approach to light up 
every asset, every company at once without the user driving 
the equation.

• We are under pressure to generate solutions if we are to 
influence the biodiversity and climate challenges. Solutions 
need to be online within the next 24 months. 

• One potential way forward, following developments in the 
climate space, is the establishment of a data commons. This 
would improve data access, potentially across all relevant 
domains, and importantly means uniting and iterating data 
models and solutions within the community – to help ensure 
solutions are not lost in siloed efforts.   

• Specifically, we suggest that resolving access to asset and 
supply chain data will not be achieved via current open or 
commercial initiatives. Here we suggest the need for an ‘asset 
registry’ within the data commons, with a clear mandated, 
funded and tasked actor who is made responsible for 
resolving data gaps – promoting a structure where incentives 
are placed onto the corporates themselves to maintain their 
own asset data. 

• We argue that supply chain data, as highly sensitive data, will 
pragmatically never be ‘openly available’. We consider that 
the potential is to design standards and the technical systems 
within the data commons to allow the secure transfer of supply 
chain data between corporates and specific FIs for assessment. 

© WWF-US / Keith Arnold
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MOVING FORWARD The question that we now face then is, can we get solutions online fast enough?

Will we be in a position in 2024 where Bloomberg, S&P Global, Refinitiv, etc. and the 
mainstream ESG data providers are able to offer accurate, independent, geospatially derived 
data points on the environmental and ecosystem and biodiversity impact for every asset, 
company, region and nation – including supply chains – week on week? Monitoring across a 
dozen indicators the ‘landscape condition’ of every water basin, consistently week on week? 

WHAT SHOULD WE DO?
First, it’s important to openly acknowledge that there is a problem – that the current status quo 
does not provide insight at a useful level of detail: the ongoing proliferation of more siloed third-
party tools and platforms do not appear to have the reach to radically improve current levels 
of insight into companies or portfolios. Effectively, it seems unlikely that more of the same is 
going to help.142

Instead, we should explore what might. Here we suggest that a key part of the solution lies in 
a geospatial driven data approach and in working together – not apart. 
To illustrate this, consider what a business intelligence provider would need to single-
handedly deliver global insight into biodiversity and ecosystem impact as outlined in this 
document? They’d need, roughly speaking; 

• Asset data for every asset on Earth

• Dynamic supply chain data for every company 

• High resolution and high cadence SRS data 

• SRS capacity and the means to develop metrics/observational data from SRS data

• Cloud compute to process SRS data and generate GIS insight 

• Ecosystem and biodiversity data 

• Ecosystem and biodiversity asset/sector specific impact methodologies  

• Landscape condition methodologies/insight  

It is effectively impossible for any single actor to pull together the above; it crosses too 
many highly specific domains. For sake of argument, a major business intelligence provider 
is unlikely to one day find itself in the position of having more biodiversity and ecosystem 
data, field access and engagement, and understanding and influence on ecological integrity 
concepts than the conservation sector. Nor is it likely to achieve more technical SRS capacity 
than the SRS sector. 

Rather than each business intelligence provider, or even FI143, trying to do to this independently 
– source its own asset datasets, its own supply chain data, its own ecosystem for SRS data, 
its own connections with the NGOs and IGOs to gain access and influence on ecosystem and 
biodiversity data and methods – we can build a data commons which allows anyone to benefit 
from the work already generated. It is far more practical for us to build interoperable systems, 
with clear open/propriety structures, to allow actors to securely pull the data resources they 
need, iteratively develop and refine models together – than for each of us to try to secure the 
same data and develop the same methods separately.

In short, we need connected platforms of platforms – we need a data commons, where 
we can unite data, and crucially share and iterate methodologies, models and code. And 
for that, we argue, it makes sense to establish an international independent ‘centre’, 
responsible for key deliverables, as without an actor having mandated responsibility, it 
seems unlikely that the public good aspects of the equation will be resolved.    

Figure 40 – Diagram, adapted from Climate Arc, 2022,141 highlighting the ‘biodiversity’ areas of the 
climate/biodiversity data ecosystem that could be radically improved.

It is likely that the increasing volumes of Earth Observation data, remote sensing methods, 
rapidly improving machine learning techniques and increasing pressure of society to 
understand climate and biodiversity will, in time, conspire to lead to improved opportunities 
for insight into the nature-related performance of assets, companies and portfolios. 
However, we cannot afford to wait. 

The reason is simple: it’s commonly reported that we have a decade to address the climate 
and biodiversity challenges. Regardless, we know that nature and climate recovery will be 
easier, the quicker the response. We know that greater transparency and accountability 
on who is impacting the natural world aids real world change. Consequently, the sooner 
functional solutions are online, the better, ideally within the next 24 months.  
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Capitalism has lifted humanity into the modern age; it has 
helped provide a better life for billions of people. It is also 
now pushing us towards a less biodiverse, poorer world. 

On Page 38, we raise the concept of the extinction 
economy, the components of the economy on the very edge 
that quietly burn, taking us closer to global biodiversity 
collapse. Often this means the clearance of critical, high-
biodiversity-value habitat. Such impacts are normally found 
at the fringe of our economy, but via supply chains flow up 
into its heart. For example, vast acreages of the Amazon 
Forest have been and continue to be legally and illegally 
burnt, converted to grassland for cattle, then later used 
for soya, supporting a vast legal economy. Facing global 
biodiversity collapse, the drive and incentive enabling such 
habitat loss must be minimized. For the financial sector, this 
means providing transparency on the nature-related history 
of these assets, and who is buying from these assets.

Of course, there are many complications, and indirect 
impacts must also be factored in. 

If we are to provide such transparency and help stamp out 
the worst of the fire, we must accept that the current efforts 
of primarily reshuffling and repackaging the same or very 
similar ‘biodiversity’ data or methods of the past to produce 
‘new’ isolated products do not scale to provide robust 
insight into the ecosystem and biodiversity impact of 99%+ 
of companies (and their supply chains). 

Instead, radically new approaches, significant investment, 
engagement and commitment from a diverse range of 
actors will be required. Here we have considered one 
approach, a geospatially driven solution, which we consider 
has merit to integrate and support the current data 
ecosystem (Figure 40). 

Corporate 
data
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It is also important to note that OS-Climate Data Commons, as any implementation of a data mesh, 
is not a product or a single vendor solution. Rather, it is a composition of components that make it 
easier to share and distribute data at scale, and a collection of processes and practices adopted by 
the organization, OS-Climate, to ultimately make climate data easier to find, easy to access, easy 
to understand and easy to compare. On the technical side, this includes a metadata catalogue that 
allows discovering data, a query federation service that helps to integrate and build interoperability 
between different and technically heterogeneous data sources, and a policy engine that supports 
the formulation and enforcement of data compliance policies across the platform. On the process 
side, this approach is supported by the establishment of distributed ‘data products’ that have clear 
boundaries and owners, as well as standard practices of ‘data as code’ across the organization. 
Data as code is an approach that requires the ability to process, manage, consume and share data 
in the same way we would typically use for application source code management, allowing full 
transparency and reproducibility of data integration and processing over time. 

The OS-Climate Data Commons platform shows a possible path for solving data gaps in 
making biodiversity data more easily accessible, and being an open-source initiative, it can 
easily be adopted and extended to support the needs described in this document.    

WHAT WOULD A DATA COMMONS FOR ‘BIODIVERSITY’ LOOK LIKE? 
In the diagram (Figure 42), we show how different types of data – at an absolute minimum, asset and 
observational data (SRS-derived) – can be brought together to support a connected infrastructure of 
shared and third-party models to generate insight for commercial providers, to FIs, and openly.  

Of course, additional complexity could be added, such as more data, supply chain data, improved 
entity matching components, water data, climate data, other ESG data sources, cloud compute, 
integration behind commercial actors’ firewalls to enable inhouse assessment with propriety data, 
etc. One important factor to consider is that a data commons can, as in the case of OS-C, support 
the flow of both open and commercial data into its systems, allowing users access to certain data 
only if they have paid for access. 

DATA COMMONS
A data commons unifies a wide range of data to make it more accessible and useful. For this application, 
this effectively means the provision of the necessary data infrastructure, protocols, standards and 
security to enable actors to openly or behind paywalls share asset, supply chain and observational 
datasets between themselves. On top of this, specific ex-situ biodiversity and ecosystem models and 
methodologies can be made openly available to allow actors to together test, benchmark and iterate 
solutions. Furthermore, an ‘app-store’ of third-party commercial solutions can be made available, 
providing FIs with all levels of access, from raw data to data models and metrics; or conversely ESG 
providers can source and develop finalized ESG scores into their systems. 

A comparable example comes from Open Source-Climate (OS-C), a non-profit organization which is 
providing open-source data and software to aid climate-aligned investment.  

OS-C DATA COMMONS
Author: Vincent Caldeira, Field CTO APAC at Red Hat & Chair of the Technical Advisory Council at OS-Climate 

OS-Climate Data Commons is an open data platform that was designed and built from the outset on a 
distributed architectural approach for data management in order to address some of the fundamental gaps 
in climate-related data that hinder financial institutions (including central banks and supervisors), investors 
and policymakers from assessing financial stability risks, and properly pricing and managing climate-
related risks. 
We believe these critical gaps, as defined by NGFS in their “Progress report on bridging data gaps”, are 
applicable to biodiversity data as well: 

• Data availability: Climate-related data needs to be accessed across asset classes, sectors and 
geographies, and over different timeframes. Data may not exist, or lack the appropriate granularity 
and/or geographical and/or sectoral coverage, or may not be easily accessible from a technical 
perspective. Also, increased volumes of data generated constantly, across a number of heterogeneous 
systems, makes it difficult to build consolidated views that stay relevant over time.

• Data comparability: Data generated by a wide variety of sources with differences in design resulting 
from the existence of multiple frameworks for climate-related disclosure, as well as lack of consistency 
in data formats and standards, makes it challenging for end-users to compare data across sources 
and frameworks.  

• Data reliability: Reliability depends on the provenance and quality of the raw data, as well as the 
auditability and transparency of the providers and data processing employed. This information is 
generally not fully audited and transparent. 

OS-Climate Data Commons addresses this through a data platform built on a data mesh architecture and 
on the foundation of open-source components – integrated and interoperable tools and libraries used 
every day by data engineers, data scientists and end-users of the data.

There are a number of key principles in adopting and implementing a distributed data mesh, namely:

• OS-Climate Data Commons defines data domains, which provide a crucial first step in identifying 
where vastly distributed climate data exists and what it contains.

• It identifies owners for data domains, which will empower individuals or groups to define and manage 
requirements for data discoverability, understandability, quality and security within their domain.

• It implements a ‘self-service’ model, where access to data domains is defined and managed through 
standard and consistent technical mechanisms provided through an open platform, making it easy 
for data engineers, data scientists and user organizations to access climate and ESG data without the 
requirement of complex technical skills to manage the infrastructure and tooling behind the data.

• It also defines and implements a ‘federated’ governance model, which respects local autonomy and 
agility while also addressing broader OS-Climate organizational and regulatory constraints, as well as 
enforcing consistent best practices for data management across the organization.   

Figure 41 – Overview of OS-Climate Data Commons architecture
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WHO WOULD BE INVOLVED?

Figure 42 – Diagram showing 
the major components a data 
commons for biodiversity 
and ecosystem insight would 
need to contain, pulling in 
both open (dark green) and 
commercial (light green) data. 

Another way of looking at the data commons concept is to 
consider the types of actors likely to be involved and at which 
steps in the data ecosystem they would participate.
 

Figure 43 – Diagram showing 
the major components of a 
data commons as in Figure 
42, along with example 
organisations. 
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In Figure 43, we list some well-known companies as examples, 
making no actual inference as to which actors would or 
wouldn’t be involved in such a data commons (Figure 43).
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BOX 6 – HOW WOULD THIS FIT WITH MAJOR TECH? 
Author: Tanya Birch, Sr. Program Manager, Google Earth Engine / Earth Outreach

As the world moves towards spatially explicit insights and accountability of ESG investing, there’s no 
shortage of available data from remote sensing and earth observation systems, and there are growing 
amounts of in-situ data streams to complement satellite data. With advances in machine learning and 
deep learning, earth observation systems and satellite data, cloud computing and emerging biodiversity 
monitoring systems, we have the ability to monitor the planet like never before.
 
While more nascent than satellite data, frequently updating data streams to measure biodiversity 
(acoustics, camera traps, eDNA) are rapidly advancing. As a result of platforms like Wildlife Insights, 
biologists no longer need to spend hours looking at images devoid of any species when producing 
species richness datasets, for example. Similarly, platforms like eBird and Merlin have made 
transformative advancements in bird identification, at least in areas of sufficient data like North America. 

Still, people are drowning in data and thirsty for insights. Companies who tout their own climate and 
nature pledges without providing transparent empirical evidence to substantiate those claims are 
accused of greenwashing. As a solution, companies like Climate Engine, built on Google Earth Engine, 
exist to help de-risk financial portfolios from near-term and long-term severe weather events, providing 
data via APIs (Application Programming Interfaces) into other operational systems. 

Nevertheless, biodiversity data is lacking, and there are many different disparate data sources that exist. 
The smooth coming together of satellite and in-situ data inputs and models will be the most helpful 
when presented in a manner that allows someone without a PhD in econometrics or remote sensing 
to derive insights from the data. The concept of a data commons, akin to the Open-Source Climate 
initiative, could support disparate biodiversity data streams aligning and providing insights to the 
countries and companies who are their ultimate end-users. 

A data clean room, where companies upload private, sensitive data to a cloud instance that then gets 
aggregated and stripped of any private, personally identifiable or sensitive data, can be key to providing 
aggregates to a data commons. Companies straddle a double-edged sword in that they have to protect 
their proprietary data (e.g. their supply chain or investment portfolios) while at the same time releasing 
enough data, benchmarked against agreed-upon datasets and baselines, to meet standards around 
nature-risk or climate-risk and authentically understand the risk their investments present. 

Earth observation data combined with biodiversity data streams could inform people making decisions 
affecting land use to substantiate ‘nature positive’ claims by companies and 30x30 claims by countries. 
A data clean room can also address security and privacy concerns around sensitive data (e.g. 
commercially proprietary data or sensitive endangered species data) with access control permissions 
intentionally agreed upon in a democratic manner. In a data commons, data and models can be made 
openly available, according to FAIR principles, especially when aggregated to remove sensitive data. 

There are plenty of pledges from CEOs and governments to address individual and collective climate 
and nature risk. When a data commons exists, regulatory oversight, disclosures, penalties when satellite 
data and biodiversity data apply when a company or country is non-compliant. With governments, 
companies and NGOs/IGOs having access to a data clean room, sharing aggregated data that has 
been stripped of data sensitivities and personally identifiable information, combined with restrictions on 
data access and data use, the scientific community can support companies’ ESG goals and help them 
not only de-risk their own portfolios but support the regulatory environment in shifting towards better 
practices across the industry at large. 

HOW MIGHT A DATA COMMONS HELP OVERCOME CHALLENGES?
In this section we consider the advantages of working together via a data commons 
approach in resolving the following issues: 

• Challenge 1 – Asset Data 

• Challenge 2 – Supply Chain Data 

• Challenge 3 – Observational Data 

An alternative solution to the scaling issue for open datasets 
might be around coordination, where different open data 
actors could each work on one specific sector and together 
work towards wider tracking of assets. However, over 
long timeframes (5 years+), either within an open data or 
community-driven effort, how certain can we be that these 
datasets will be robust, that ownership is correct – for tens 
of millions of assets? The reality is that any open approach, 
with current technology, is unlikely to succeed at scale, and 
even if it does it is unlikely to be sustainable with the weight of 
maintenance always present month on month. 

As-documented commercial offerings (See Page 44) provide 
far higher quality and viable data products for geospatial ESG 
application – and can be used for the sectors they already 
cover. The issue with the commercial approach is, will they 
invest to define other sectors where there is no historic or 
proven commercial business model to do so? 

Instead, the most viable approach appears to be to place the 
burden of maintaining asset datasets back onto the financial 
sector and asset-owning companies themselves. Some 
corporates have called for an ‘open asset registry’ within 
the data commons, which enables the systematic collection 
of asset data (with or without ownership, with differing 
discoverability and access), uploaded by the corporates 
themselves, via financial sector incentives. The development 
of such an initiative should be mandated and tasked to initiate 
and operate the registry, based on open technology. Such 
an effort could be launched rapidly and could be a first step 
forward in a longer-term push for regulation and disclosure 
efforts, requiring companies to report the location of their 
direct holdings into such an ecosystem. Within this data 
ecosystem, existing open and commercial asset datasets 
could still be connected in, as required.

Of course, regulation and disclosure developments 
should also be supported, but it seems unlikely, due to the 
timescales of regulation, that such data will be available 
within the short term.  

CHALLENGE 1 
ASSET DATA: DEFINING THE LOCATION 
OF EVERY ASSET ON EARTH 
Moving forward, we need viable approaches to generate 
and maintain asset datasets at scale. We need practical 
means to define, and critically maintain, all sectors’ asset 
datasets, including those with millions of assets. Broadly 
speaking we see three current approaches to generating 
asset datasets (See Page 44): 1) proprietary, 2) open 
(manually created or via SRS or some ML method) or 3) 
open – community driven.

Which approach has potential? 

Open asset datasets, such as WRI ‘Global Power Plants’ 
or ‘Palm Oil Concessions’, suffer from three major issues 
from a geospatial ESG perspective. First, they tend to be 
produced as a ‘one-off’ initiative with no resources for long-
term maintenance; as they age without update, uncertainty 
around correct assignment of ownership mounts. Second, 
to date they have only proven capable of tracking a low 
number of assets, frequently applied to industries with low 
asset counts (≤5,000 assets), with no real demonstrated 
scalability. Those few examples over 50,000 assets either 
have gross errors, a lack of ownership information or, more 
often, face a multitude of issues. Third, they also tend not 
to capture key attributes consistently and contain greater 
error and data biases, such as recording only the assets of 
larger companies.

This is to be expected, as typically open asset datasets 
are built and launched to answer a specific research need 
and, due to the realities of funding restrictions, are unlikely 
to have been developed with the intention of long-term 
maintenance or geospatial ESG application. 

To surmount these development and long-term maintenance 
challenges, one open data approach which shows greater 
potential is the open community-driven model. For example, 
Global Energy Monitor has built live asset datasets, 
maintained by an active online community.  Even so, as 
shown in Figure 18, these track 1,000–10,000 assets, which 
is significantly lower than their commercial counterparts. 
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CHALLENGE 2  
SUPPLY CHAIN DATA: DEFINING THE DYNAMIC 
SUPPLY CHAINS OF EVERY COMPANY ON EARTH
Without supply chain data it will remain very difficult to estimate the true impact of actors within 
high-tier industries. This is because the higher up the supply chain, the less likely it is that the 
business requires direct interaction with the natural world (Figure 14). However, this does not 
mean they are less likely to be drawing from, or enabling via supply chains, impacts to the 
natural world. 

For example, a major car manufacturer is unlikely to clear pristine rainforest for its headquarters 
or regional offices, but it may be sourcing its raw materials from mines which are. Knowledge of 
each asset’s performance, and supplier’s asset performance, would allow the car manufacturer 
itself to act or even change supplier if necessary. It would also provide the FIs with improved 
oversight of the ‘biodiversity’ implications associated with the car manufacturer and the ability 
to flag the problematic assets with the company.  

The most significant impacts are often present at the ends of supply chains, often held by 
private, junior, effectively unaccountable actors. Transparency as to which accountable actors 
(listed companies) are doing business with these asset holders within their supply chains is a 
requisite to reducing incentives and markets for these operations.  

Unfortunately, supply chain data is very difficult to gain access to; even the commercial 
business intelligence providers have struggled to make headway in this space, often having 
to rely on effectively reverse engineered and estimated connections. Indeed, in many cases 
companies themselves will not know the full extent of their supply chains; for example, a 
supermarket might know that it buys its oranges from wholesaler X, but then no further down 
the supply chain. 

Due to the data gaps, and significant data sensitivities around supply chain data, where for 
competitiveness reasons companies may not wish others to know their suppliers. It is difficult 
to envision any possible solution within the next 12–24 months which moves supply chain data 
into a more public sphere. What might, however, be possible is the creation of ‘supply chain 
data sharing standards’ attached within the data commons infrastructure, to allow a company 
to securely share their supply chain data with a specific FI for analysis behind the FI’s firewall. 
This act could be incentivized by the financial sector, slowly normalizing the approach as part 
of the due diligence process. 

CHALLENGE 3  
BASELINES / OBSERVATIONAL DATA / METRICS / IMPACT ADJUSTMENT 
The development of the metrics, baselines and key indicators necessary to provide insight 
from geospatially driven approaches is still in its infancy. 

As we move forward, there is the danger that commercial operators keen to capitalize on the 
emerging market will, faced with data limitations, release sub-par data products. This creates 
two issues: 1) it undermines the emerging field and 2) it will help normalize low-quality insight 
within the field. 

To resolve this, various actors will need to move quickly to establish high data standards by 
creating widely accepted and peer-reviewed data products themselves (e.g. baselines, route 
impact layers, etc). Standards and research will need to be conducted to test and publicly 
review those products released, to highlight limitations and strengths within the emerging field.   

FINAL THOUGHTS
Our ability to move forward with biodiversity and ecosystem insight, and indeed wider climate and 
social and governance insights, will rest heavily on the available asset, supply chain and financial data. 
Without this ‘baseline data’, multiple fields of research will stagnate. The flow of this data, then, is not just 
relevant for the ‘nature-related’ insights but potentially across all ESG topics.

It is important to reflect on one major point. While the space is complex – it is viable. No new 
technology is required. However, who’s going to do it? Who’s going to establish open standards and 
build the necessary public good data infrastructure? Commercial ESG actors will be motivated to 
ensure that they have the most robust data offerings in this space, developing, as far as possible, their 
own geospatial ESG insights and methods. However, their progress will be limited unless the extensive 
public good parts of the equation (e.g. standards, data infrastructure) are also resolved.  

In this publication, we have called for a new, independent, unaffiliated ‘centre’ to deliver the components 
outlined here, to ensure that the flow and power of the SRS sector can be brought to bear to factor in 
nature externalities within the financial sector. This follows developments such as the Met Office Hadley 
Centre, established by the UK government in 1990 to aid climate change research. 

The development of a geospatial ESG data commons, and a ‘centre’ to oversee developments, has 
several major advantages:

• Its moves us away from the current situation, which is not delivering insight. It is ‘a flashlight in the 
dark’, which only provides insight on the single assets or company the light is focused on, and 
where currently FIs must pay and login to multiple (5+) unconnected platforms to run assessments 
themselves. It moves us to a model where all the information is widely available, already processed 
and analysed, and integrated into the business intelligence world.   

• It will allow the NGO/IGO a viable payment structure for their data products, with wide reach 
connecting across platforms and with low management overhead, as the data infrastructure is 
provided for them. 

• It provides a centralized, authoritative place for methods, models and approaches to be tested, 
iterated and assessed by the community and domain experts.

• It will allow the FIs and Business Intelligence providers access to SRS data products, in one place, 
without the need for dialogue with a wide variety companies.

• It will streamline and, in many cases, provide a new business opportunity for the SRS community. 

• It aligns and supports data needs in other areas, such as climate change, which can apply the same 
asset and supply chain and even ‘environmental’ variables to support climate insight, and potentially 
social and governance insight. 
 

The question we face now is, ‘Can we move quickly enough, within the next 12 months, to 
radically improve ‘E’ within modern ESG?’ 
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• DEVELOP AND REFINE OBSERVATIONAL DATA – Clarity needs to be created around biodiversity 
and ecosystem observational data, defining robust metrics. Metrics need to be tested and openly 
reviewed as to their ability to detect the variable under measurement.  

Action – The ‘biodiversity’ community should: 
 - Align to existing efforts such as GEO BON and GBIF; provide support and iterative guidance 
as to which observational datasets, and the metrics derived therefrom, are scientifically 
robust and how they might be improved. 

Action – The Satellite Remote Sensing (SRS) communities should:
 - Align to existing efforts, and collectively identify spatial or temporal gaps and any possible 
means of improvement of the observational data portfolio, either via more regular higher-
resolution data gathering or alterative solutions.

 - Explore with the wider community novel approaches, such as data triangulation, or the 
testing of specific novel metrics. 

• DEVELOP AND REFINE METHODS AND MODELS – As an emerging field, the core methods of 
geospatial ESG for biodiversity and ecosystem insight remain fluid. Critically, areas such as the 
framework, area delineations, global baselines and models determining topics such as, indirect 
impacts or landscape condition, need to be collectively worked through.

Action – Researchers (perhaps via structured working groups) need to provide clarity on the optimal 
methods and approaches. Results should be peer reviewed and published when possible.  
  

• CREATE STANDARDS – Across all this work – ranging from basic arrangements for asset datasets to 
data security protocols – soft, technical standards need to be developed. 

Action – Open-source standards need to be rapidly deployed to aid developments – a large resource of 
existing technical standards exists which could be adopted.  

• ALIGN WITH CLIMATE – Many of the data needs of the ‘biodiversity’ space directly align with the 
needs of the climate space and wider ESG needs. Almost all ESG efforts, for example, would benefit 
from improved access to financial data, asset data and supply chain data. While eventually, since 
climate and nature are interlinked issues, the two will need to be considered together, as and when the 
data science allows.

Action – Engage with ‘climate data actors’ early on, when developing data commons, frameworks, 
metrics, standards, etc., to identify opportunities for alignment.   

• EDIT TO: CREATE A ‘CENTRE’ TASKED WITH DELIVERING THE INCLUSION OF CLIMATE AND 
NATURE GEOSPATIAL INSIGHTS INTO THE FINANCIAL SYSTEM – Ultimately if no-one is made 
responsible for the above, it is likely that progress will stagnate, with commercial actors unable to 
resolve the public good aspects of the equation. To ensure the work is delivered, an independent 
international research centre needs to be established – connected with existing efforts but tasked and 
resourced to ensure the delivery of SRS data, methods, models and public data utilities to aid localized, 
regional biodiversity and ecosystem insight and interlinked social and climate issues. 

Action – The government/s which take the initiative on the establishment of such a centre or federated 
model will place themselves at the heart of the next revolution: the inclusion, via the full weight of the 
SRS sector’s power, of environmental and climate externalities into the financial system.  

RECOMMENDED 
ACTIONS 
We suggest the following key actions, to radically improve 
biodiversity insight at the scale required. 

• JOIN THE CONVERSATION – To push forward the 
concepts outlined in this document, WWF will shortly 
launch a ‘Geospatial ESG Consortium’. We welcome 
financial institutions, conservation actors, tech, earth 
observation, remote sensing, ESG providers, etc. interested 
in the emerging field to join us.  

• CREATE A ‘BIODIVERSITY DATA COMMONS’ – We 
need to move away from siloed, standalone platforms to a 
‘platform of platforms’ federated approach which enables 
improved data access and interoperability of asset and 
supply chain data, and observational data – integrating into 
the financial sector’s data ecosystem. 

 

Action – A ‘data commons’ needs to be established to 
enable actors to share critical asset and observational data, 
models or approaches – openly, securely or behind an FI’s 
firewall – with robust standards. This needs to radically 
improve access to critical asset and supply chain data to 
enable assessment and, critically, the building, sharing and 
iteration of models and methods.    

• CHANGE CORPORATE DATA DISCLOSURE / ACCESS 
– Every asset on Earth needs to be geolocated, and 
accessible in either open or proprietary datasets (within the 
data commons). Ownership must be accurately maintained, 
and ideally asset datasets should be sector specific, 
capturing wider attributes and defining the property 
boundaries.  

 

Action – An ‘asset registry’ is needed within the data 
commons, uniting via a federated approach, ongoing open 
data disclosure and regulation initiatives. While placing 
the primary burden of generating and maintaining asset 
datasets and company trees onto the corporates. 

 

Action – Develop means to enable the sharing of supply 
chain data between a corporate and FI securely within the 
data commons.   

Maxar GeoEye-1 satellite image showing wildebeast migration, on August 11, 2009. 
Satellite image © 2022 Maxar Technologies.
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Maxar WorldView-2 satellite image showing the lower Pure River, on September 6, 2019. 
Satellite image © 2022 Maxar Technologies.
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ENDNOTES
1 Where possible we have made attempts to align the terminology used 

within this document with that adopted by the Taskforce on Nature-
Related Financial Disclosures (TNFD). 

2 Science-Based Targets Network (SBTN), Taskforce on Nature-
related Financial Disclosures (TNFD) and the European Sustainability 
Reporting Standard (ESRS).

3 WEF, 2022 
4 WWF, World Bank and Global Canopy, 2022
5 Biodiversity can be defined loosely as the variability among living 

organisms. The term is increasingly used within the financial 
community as a byword for anything related to ‘nature’ or the ‘natural 
world’. Within the ESG space, there are a wide range of data products 
that present, or could potentially provide, proxy insights relevant to 
biodiversity and as such are often communicated around or within the 
‘biodiversity’ label. For example, a wide range of indirect geospatial 
proxies, such as ‘freshwater extraction’ or ‘legal area delineations’, are 
used, which without being a direct measure of biodiversity, may still 
arguably provide useful insight. 

 However, for reference, a more complete definition of biodiversity 
is from the United Nations Convention on Biodiversity (CBD), ‘The 
variability among living organisms from all sources, including, inter alia, 
terrestrial, marine and other aquatic ecosystems and the ecological 
complexes of which they are part; this includes diversity within 
species, between species and of ecosystems’ (CBD, 1992).

6 Where X could be a specific development for project level finance, 
a corporation, a portfolio, a sovereign state or any other variable of 
interest.

7 Throughout this document we’ve tried to discuss matters simply to aid 
understanding for a non-biocentric audience; however, it is important 
to note that many of the points made here are generalized and are not 
meant as robust conservation science statements. 

8  An ecosystem is defined as ‘a dynamic complex of plant, animal 
and microorganism communities and the non-living environment, 
interacting as a functional unit’ (CBD, 1992)

9 Cardinale et al., 2012
10 Where X could be a specific development for project level finance, 

a corporation, a portfolio, a sovereign state, or any other variable of 
interest.   

11 Ceballos et al., 2015
12 Complete recovery from prior major extinction events took tens 

of millions of years. The Ordovicain required 25 million years, the 
Devonian 30 million years, the Permian and Triassic so close together 
took 100 million years, Cretaceous 20 million years. There have been 
authors, who have suggested that the mixing of species (by humanity 
moving invasive species around the world), will fill the extinction 
gaps caused by humanity, and that extinction events were followed 
by a surge of new species. Combined, this will result in a wealth 
of biodiversity. This may one day be the case; however, we know 
it will take millions of years of the cogs of the ecosystems to work 
themselves back into viable arrangements.  

13 We use the terms direct and indirect with a slightly differing 
terminology, to better align to the observational data capabilities (See 
Glossary).

14 Soto et al., 2022
15  Endemism refers to species restricted to a single specific location, 

area or region. 
16 Stewart and Konar, 2012
17 Rogers-Bennett and Catton, 2019
18 Rasher et al., 2020
19 NASA, 2013
20 NASA, 2020
21 ESA, 2022
22 ESA, 2022b
23 Duke et al., 2017
24 Swiss Re Institute, 2020
25 We acknowledge that improvements in conservation science driven 

by new technology and methodologies, such as landscape audio 
and environmental DNA, offer potentially new means for large scale 
in-situ field data collection which may be relevant for geospatial ESG 
applications (See World Bank and WWF (2020)) – however, currently these 
approaches are not yet able to provide insight at scale, nor does it appear 
likely that will offer insight within the immediate future (next 5 years).  

26 ForestGEO, 2022
27 Edge effects can be defined as ecological alterations linked with 

development of sudden, artificial edges of forest fragments. 
28 Environmental Justice Atlas, 2016
29 Location: 16°51′41.09″N 89°00′47.56″W
30 Probe International, 2009
31 Probe International, 2009
32 Canadian International Development Agency, 2016
33 Plumptre et al., 2022
34 Kennedy et al., 2019
35 Grantham et al., 2020
36 Kennedy et al., 2019
37 Sanderson et al., 2002
38 McGarigal et al., 2018
39 Tierney et al., 2009
40 Anderson, Clark and Sheldon, 2014
41 Anderson, Clark and Sheldon, 2014
42 Gunderson, 2000
43 Brown and Williams, 2016 
44 Faber-Langendoen et al., 2012 
45 Andreasen et al., 2001 
46 McGarigal et al., 2018
47 GEO BON, 2019
48 Haase et al., 2018
49 Ibid. 
50 Robeco, 2022
51 Ministère de L’économie des Finances et de la Souveraineté 

Industrielle et Numérique, 2021 
52 European Commission, 2022
53 EFRAG PTF-ESRS, 2022 
54 CDP 2022 Questions on Biodiversity: 
(C15.1) Is there board-level oversight and/or executive management-level 

responsibility for biodiversity-related matters within your organization?
(C15.2) Has your organization made a public commitment and/or endorsed any 

initiatives related to biodiversity?
(C15.3) Does your organization assess the impact of its value chain on 

biodiversity?
(C15.4) What actions has your organization taken in the reporting year to 

progress your biodiversity-related commitments?
(C15.5) Does your organization use biodiversity indicators to monitor 

performance across its activities?
(C15.6) Have you published information about your organization’s response to 

biodiversity-related issues for this reporting year in places other than in 
your CDP response? If so, please attach the publication(s).

55 World Resource Institute, 2022
56 Ecometrica, 2022
57 Maphubs, 2022
58 Integrated Biodiversity Assessment Tool (IBAT), 2022
59 Asset Resolution, 2022
60 Verisk Maplecroft, 2022
61 Reprisk, 2022
62 See Finance for Biodiversity (2022) for a detailed overview of these 

approaches. 
63 Climate Arc, 2022
64 CDP, 2022
65 TNFD, 2022b
66 TNFD, 2022c
67 EFRAG PTF-ESRS, 2022
68 Mollod and Klug, 2022 
69 Greer, Sim and Koplinski, 2022
70 Mollod and Klug, 2022

71 Mollod and Klug, 2022
72 Pütz, et al., 2014
73 Pütz, et al., 2014
74 We refer to these firms – Bayerische Motoren Werke AG and 

Mercedes-Benz Group AG – purely as examples of famous major 
companies, with no implication or suggestion of any negative or 
positive ecosystem and biodiversity impacts.

75 Robeco, 2022
76 Agrillo et al., 2022
77 See Page 77.
78 Aggregation of results will inevitability meet complexities as we 

attempt to unite differing asset classes: different geospatial metrics or 
traditional ESG data points are sector specific and may not be present 
or comparable with other sector specific metrics – for example, 
a metric for cotton farming pesticide use (within a major clothing 
manufacturer’s supply chain) may not fit with marine oil spill detection 
(within a major O&G company) within a portfolio scoring. See Page 43 
on quantification of metrics. 

79 WWF, World Bank and Global Canopy, 2022
80 Global Energy Observatory et al., 2019
81 This dataset combines different oil and gas assets all as ‘units’, 

defining different instances of level, field, block, project, concession, 
complex, basin, pool, area, unit, region, and sub-basin within the same 
dataset. 

82 Kruitwagen et al., 2021 
83 This dataset reports 68,661 assets. However there is significant error 

rate, with many ‘unique’ records reporting the same asset. 
84 Enverus additionally provide detailed asset coverage across a range of 

O&G asset types (e.g. concessions, surveying pipelines, rigs, etc.)
85 Maus et al., 2020 
86 The geolocation of every asset might sound ambitious, but from 

a technical standpoint it is viable –complex, asset-rich sectors 
have already been mapped (e.g. oil and gas), and already, far more 
‘asset level’ data are collected in Google Maps than are required for 
geospatial ESG requirements. 

87 DAMSAT, 2022
88 TNFD, 2022d
89 EFRAG PTF-ESRS, 2022
90 See WWF, World Bank and Global Canopy (2022) for a detailed 

explanation.
91 Chang et al., 2021
92 WWF, World Bank and Global Canopy, 2022
93 Data dependant – assuming access to suitable data. 
94 Hydrosheds, 2020
95 We propose the use of water basins, but of course, other any regional 

definitions can be applied for wider landscape (L) context, such as 
state or municipality; multiple regional definitions can be used at once. 

96 Geospatially defined global ‘biodiversity’ and/or ‘ecosystems’ 
baselines arguably already exist in various forms (See Page 69). 
However, there is a need to develop robust, widely backed ‘historic’ 
baselines and establish standards for geospatial ESG application.  

97 Sandom et al., 2014
98 DEFRA, 2013 
99 Gaston, 2000
100 Pontarp et al., 2019
101 Hillebrand, 2004
102 Judas, 1988
103 Gaston and Blackburn, 2007
104 Griffiths, 1997
105 Patterson, et al., 1998
106 O’Brien, 1993
107 Jetz, McPherson and Guralnick, 2012
108 Marsh et al., 2022
109 Olson et al., 2001
110 Dinerstein et al., 2017

111 GEO BON, 2022
112 Half-Earth Project, 2022
113 NatureServe, 2022
114 There is across nature-related insight efforts an increasing complexity 

within the terminology used. Here for a non-technical audience, we 
attempt to keep the terminology as straightforward as possible. We 
define ‘impact’ as an attribute event, either natural or human-made, 
that adversely alters the status of ecosystem condition (See Glossary). 

115 Within the natural capital terminology, an impact is different to an 
impact driver. Impacts are ‘changes in the quantity or quality of natural 
capital that occurs as a consequence of an impact driver’. Impact 
drivers are defined as: ‘a measurable quantity of a natural resource that 
is used as an input to production or a measurable non-product output 
of business activity.’ (Natural Capital Coalition, 2016).

116 As climate change impacts make such events more likely, these 
impacts, as a minimum, averaged landscape risk weightings could be 
applied to adjust results. 

117 We apply a different definition of ‘direct’ and ‘indirect’ impacts, which 
traditionally are defined by causation: impacts known to be directly 
caused by operator X. Here we drop the need to define causation, 
since often it is impossible to know with certainty which impacts are 
directly caused of a company’s operations (See Glossary). 

118 Gerson et al., 2022
119 Ibid. 
120 Ackerman et al., 2016 
121 WWF, 2018
122 Steckling et al., 2017 
123 Worse still, it almost entirely avoidable; the mining technologies exist 

to reduce the amount of mercury required, or capture mercury used 
during the gold purification process before its release. It is likely 
that illegal miners are not aware of the risks, or unable to afford the 
equipment. 

124 Kea Conservation Trust, 2022
125 Due to the complications of route identification, where thousands of 

potential routes may be present between two assets, it would appear 
simplest now to focus on estimated transportation impacts via the 
single shortest possible route, although of course more accurate, 
intelligent route selection can be applied.

126 Natural England, DEFRA and Pow, 2021
127 GLOBIO, 2022
128 Hettler, 2022
129 Audubon, 2022
130 We suggest the use of water basins over ecoregions, as they align to 

natural processes (loosely aligned to ecosystems and biodiversity and 
are non-subjective), and due to the technical difficultly in defining the 
borders of current ecosystems. 

131 WWF, 2022
132 Tickner et al., 2020
133 Dickens et al., 2021
134 NASA SWOT, 2022
135 Grill et al., 2019
136 Opperman et al, 2021
137 Kuehne et al., (in prep) 

138 Deltares. (2021).
139 Feio et al., 2022
140 Forzieri et al., 2022
141 Climate Arc, 2022
142 There is arguably a comfort with the status quo, where some FIs may 

be more at ease with higher levels of uncertainty around biodiversity 
and ecosystem impact. Moreover, some data providers may be keen 
to continue unchanged the provision of their products. Regardless, it 
seems that a growing body of FIs agree that ‘biodiversity’ insight can 
be improved and that it is a priority to do so considering the wider 
implications. 

143 Some FIs have worked to scale their internal geospatial ESG capacity, 
which should be welcomed; however, while it will give them a 
significant advance in understanding such data, it is impossible for any 
single inhouse team to deliver a complete geospatial ESG ecosystem. 



WWF / MAXAR / THE BIODIVERSITY DATA PUZZLE

If there is no URL

With URL - Regular

OR

Why we are here
To stop the degradation of the planet’s natural environment and
to build a future in which humans live in harmony with nature.

Why we are here

wwf.org.uk

To stop the degradation of the planet’s natural environment and
to build a future in which humans live in harmony with nature.


	_Hlk118544060

