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GLOSSARY

Asset A physical entity owned by a parent company either directly, partially or via its subsidiaries.
These assets can be non-static, moveable (e.g. an oil rig, or aircraft). Assets do not include the
production assets of a company (e.g. the production cars of a car manufacturer) but only those
assets used within the company’s operations to enable production.

Asset Data Geospatially definable data which at a minimum defines the location (X, Y) coordinates and

(Asset Dataset/s)

ownership of a given set of assets. Frequently, asset datasets are sector specific and contain
additional attributes tracking variables relevant to the specific asset class. More robust asset
datasets track more attributes and use polygons to accurately geolocate assets and property
extent.

Note: Asset datasets are both openly and commercially available, with six or seven sectors
currently well documented in commercial offerings. No widely adopted standard exists for
these datasets.

Baseline

An estimate of the prior status of ecosystem condition or biodiversity for a given time and area.

Biodiversity

Biodiversity is the variability among living organisms within species, between species and
between ecosystems. Biodiversity underpins the proper functioning of ecosystems.

A more complete definition of biodiversity is from the United Nations Convention on
Biodiversity (CBD): ‘The variability among living organisms from all sources, including, inter
alia, terrestrial, marine and other aquatic ecosystems and the ecological complexes of which
they are part; this includes diversity within species, between species and of ecosystems’
(CBD, 1992).

Company
(Company-Level, Parent Company)

Refers to the legal entity which owns or controls the majority interest of other entities, such as
subsidiaries and assets.

Cumulative Impact/s

Impact/s, both direct and indirect, that interact, aggregating to cause further impact to
ecosystem condition.

TNFD, 2022 use the following definition: ‘A change in the state of nature (direct or indirect) that
occurs due to the interaction of activities of different actors operating in a landscape’

Direct Impact/s
(Destructive Impact/s)

Impact/s that permanently (5 years+) destroy habitat.

TNFD, 2022 uses the following definition: ‘a change in the state of nature caused by a business
activity with a direct causal link.’

Note: Due to the challenges and potential legal implications involved in proving a causal link
between a business activity and impact to the natural world, within this document we assign
impact via the IBLG (Internal, Bordering, Landscape, Global) approach, which does not consider
the causation link but rather impact/s (reported values) within set spatial delineations.

First-Generation Biodiversity Solutions

An approximate term used to refer to any current data solution, tool, platform, etc. (2022 and
prior) used for nature-related insight. These tools, platforms and approaches can broadly be
considered the first generation, the initial developments in the space.

Second-Generation Biodiversity Solutions

Still to emerge (post 2023) second generation solutions achieve improved nature-related
insight at the asset level, most probably through increased access to more robust
observational and asset data, and improved standards and data infrastructure.

Geospatial ESG

The use of geospatial data to generate ESG-relevant insights into a specific commercial asset,
company, portfolio or geographic area (WWF; World Bank; Global Canopy (2022).

Habitat The area, characterized by its abiotic and biotic properties, that is habitable by a particular
species (Keith, D et al., 2020).

IBLG Impacts A spatial division of nature-related insights into results within the property, internal (1),

(Internal/Bordering / bordering (B) the property (< 1km from the property), within the landscape (L) (1-1000km from

Landscape/Global Impact/s)

the property or to a stated jurisdiction, e.g. a water basin) and globally (G) (= 1,000 km from the
property — such as GHG emissions).

Developed by WWF’s Conservation Intelligence (Cl) team and used within this document to
consistently and without bias delineate and assign direct and indirect cumulative impact/s to
an asset without the need to prove or imply causation.

Impact/s

An attribute event, either natural or human-made, that adversely alters the status of an
ecosystem’s condition.

TNFD, 2022 uses the following definition: ‘Changes in the state of nature, which may result in
changes to the capacity of nature to provide social and economic functions. Impacts can be
positive or negative. They can be the result of an organisation’s or another party’s actions and
can be direct, indirect or cumulative.’

Indirect Impact/s
(Reductive Impact/s)

Impact/s that without significant habitat destruction damage, degrade or undermine in some
way the ecosystem condition, either for a given area or ubiquitously (e.g. GHG emissions
causing global climate change).

TNFD, 2022 uses a different definition, not applied here due to issues around proving
causation: ‘A change in the state of nature caused by a business activity with an indirect
causal link (e.g. a change indirectly caused by climate change, to which an organisation’s
greenhouse gas emissions contributed).’

Ecosystem

A dynamic complex of plant, animal and microorganism communities and the non-living
environment, interacting as a functional unit (CBD, 1992).

Ecosystem Asset/s

A form of environmental asset that relates to diverse ecosystems. These are contiguous
spaces of a specific ecosystem type characterised by a distinct set of biotic and abiotic
components and their interactions (UN, 2021).

In-situ Data

In-situ Solutions

Nature-related data, or other data, collected from the field, within or near (<1 km) to the
assessed variable (e.g. species monitoring, water samples, smart meters, etc).

Nature-related data solutions that fully or partially rely on primary or secondary data collection
from the field, within or near (<1 Km) to the assessed variable (e.g. species monitoring, water
samples, smart meters, etc).

Metric/s

Results, or data, providing a form of measurement.

Ecosystem Condition
(Ecosystem Integrity / Ecosystem Health)

The quality of an ecosystem as measured by its abiotic and biotic characteristics. Condition is
assessed by an ecosystem’s composition, structure and function which, in turn, underpins the
ecological integrity of the ecosystem and supports its capacity to supply ecosystem services
on an ongoing basis (TNFD, 2022, Adapted from: UN, 2021).

Nature

The natural world, with an emphasis on the diversity of living organisms (including people) and
their interactions between themselves and with their environment (Diaz, S et al., 2015).

Environmental Asset/s

The naturally occurring living and non-living components of the Earth, together constituting the
biophysical environment, which may provide benefits to humanity (UN, 2021).

Observational Data/sets

Geospatially defined data, used to provide insights. Within this document we focus on
observational data which, combined with asset data and other data points, can be used
to generate metrics to support insights into biodiversity and ecosystem impact. However,
a broad range of observational data can be applied and fused with other data types for
additional insights into other topics.

Ex-situ Data Solution

Nature-related data solutions that do not require any field collected data (in-situ data) but rely
almost fully on external data sourced remotely or from existing secondary data sources (e.g.
satellites, models).

Portfolio
(Portfolio-Level)

A collection of parent companies, and their respective share within a group, forming the
‘portfolio’ typically held by portfolio managers.



To address the interlinked climate and biodiversity challenges, the financial sector needs data
accurately defining the historic and ongoing biodiversity impacts of any given asset, company,
portfolio, etc. week on week, relative to its peers — to enable meaningful differentiation.

Due to the technical difficulty in providing ‘true’ ecosystem and biodiversity impact without
‘in-situ’ (ground-collected) data, current first-generation geospatial ‘biodiversity’ tools and
platforms have effectively evaded the challenge by providing alternative proxy insights —
insights which do not actually define the immediate and cascading impacts of a given asset
on the surrounding ecosystem condition and the health and trends of the immediate and wider
biodiversity over time. The challenge now, considering the likely 3-5-year time lag in collecting
and aggregating in-situ data at a global scale for ESG applications, is to find robust methods
with ex-situ data alone. Considering the global scale of the application, this essentially leaves
- one existing data option: satellite remote sensing data.
Within this document we explore the topic holistically, looking at how improved ‘ecosystem
and biodiversity’ insights can be gained, and could be consistently produced, for every
commercial asset on Earth, with geospatially driven ex-situ data approaches. This data
can then be blended with other ESG data points for individual project finance or summed
to parent, portfolio or area (e.g. state, nation). Proposed methods are presented within
the context of the wider policy and technical realities, showing that such insights are
unlikely to organically scale without developing the necessary supporting public good
data infrastructure to allow the flow and integration of data types across a diverse
range of stakeholders.

The report makes several key methodological contributions and, recognizing that data and
models will evolve, outlines various data-agnostic concepts for discussion.

. ‘Geospatial Asset Screening’ should adhere to an agreed standard - To remain
systematic in structure across products and to help remove the complexities around

‘causation’ (e.g. proving that a specific commercial asset caused a particular environmental
impact), we propose using fixed area delineations — specifically, defining the values reported
for any given observation dataset or model within the internal property of any given asset

(I); the bordering area near to the asset, based either on a ratio or fixed distance/s (B);

within the landscape (L) (e.g. within the water basin); and globally (G) — the IBLG model.
Importantly, we propose methods for developing landscape condition metrics (L) to adjust
the impact of values reported within IB values to the wider landscape situation.

. Impact should be simplified and measured directly — We divide ‘impact’ of any given
asset within its IBLG spheres into direct (habitat clearance) and indirect (all other impacts
than direct habitat clearance). This simplifies the equation to its absolute, to prioritize and
separate habitat loss, aligning to the ex-situ data realities, where habitat clearance is often
easily detected via Satellite Remote Sensing (SRS) approaches.

. Methods for the quantification of ‘biodiversity’ impact needs to be agreed - here we
suggest that until the science and the aggregation of in-situ data into the equation improves,
the most readily practical approach is to apply peer-to-peer percentile comparison: simply
comparing assets to one another, adjusted for relevant additional factors (e.g. production
volume, ecoregion, biomass, landscape condition, etc.). However, this, approach is only
possible for those sectors having robust asset databases with global coverage.

Recognizing that the entire emerging field of geospatial ESG, and indeed many related fields,
will remain constrained until the wider realities are factored, we suggest that there needs to be
a stepwise change in the collection, maintenance and sharing of asset, supply chain and
observational data. To overcome the current constraints in a feasible manner, we propose the
development of an international ‘centre’ to oversee the creation and maintenance of a public
goods data commons, best practice, benchmarking, etc., to enable the flow and integration of
data across the diverse range of stakeholders from satellite to spreadsheet.

’ -""_L._-; &, © Emmanuél Rondéau / WWF France
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INTRODUCTION

Addressing the biodiversity crisis and climate change will shape our ability to provision the
fundamentals for society, such as fresh water and sustainable food production.

As different sides of the same coin, the two issues are mutually reinforcing. Simply put, rising
temperatures will exacerbate biodiversity loss, releasing more greenhouse gases, creating

a negative feedback loop. This will inevitably aggravate a wide range of societal issues,

from civil conflict to resource competition, in turn causing more biodiversity and climate
impacts. Conversely, improved ecosystem condition and biodiversity is likely to help store
and sequester carbon, support water and food security, and provide greater resilience to aid
society in weathering the ongoing storm of climate change impacts.

The climate and biodiversity challenges are vast. Yet, every action taken within the biosphere —
oceans, air, land and soil — matters. Our actions, no matter how small, are linked and may have
cumulative negative or positive impacts on the Earth’s systems.

EVERY ACTION THEN MATTERS.

Due to the scale of these challenges, effective solutions require consistent action from global
society, where humanity must pull together in the same direction, making the right decisions
time and time again, over decades. Otherwise, the actions of one group, or the actions of
tomorrow, will undo the progress of today.

WE NEED UNITED ACTION AT A GLOBAL SCALE,
DELIVERED CONSISTENTLY OVER THE LONG HAUL.

If there was no time limit — if we had all day, as it were — humanity would almost certainly move
towards sustainability over decades. Unfortunately, we are under time pressure — with less than
a decade to oversee a major reduction in emissions and a U-turn on our approach to planetary
biosphere management. Solutions need to be found fast and rolled out immediately.

WE NEED PRACTICAL SOLUTIONS OPERATIONAL
WITHIN A SHORT TIMEFRAME (24 MONTHS).

As the engine behind our global civilization, the financial sector has enabled scientific
progression, massive increases in quality of life and many of the comforts we take for granted.
It also plays the leading role in where and how we impact the natural world through the
allocation of capital. How well humanity meets the biodiversity and climate challenges will be
massively influenced by the response of the financial sector.

PURPOSE AND SCOPE OF PAPER:

To factor climate and biodiversity into decisions, the financial sector needs access to accurate insight
into the impact of 95%+ of companies (or at least a significant majority of companies to ensure wide
transparency and accountability), at suitable scales for all its varying applications. Over the last

two decades, important gains have been made to aid financial actors in understanding the climate
change implications of their decisions (although much work remains to be done); in contrast, however,
biodiversity remains poorly understood and difficult for the sector to reconcile.

Within this paper we aim to catalyse discussion around practical ways forward to resolve the
‘biodiversity data puzzle’ and provide the data insight required for the financial sector.

This paper focuses on defining the impact of commercial operations on terrestrial biodiversity, via

a geospatially driven approach. While we recognize that many are interested in exploring impact in
marine environments or exploring other biodiversity-related topics — such as dependency on nature,
ecosystem services, nature-based solutions, transition, regulatory risks and opportunities — these
are outside the of scope of this paper. However, granular insight into biodiversity impact is often a
preliminary insight required for exploring other biodiversity-focused topics. Critically, the technical
solution proposed is data- and model-agonistic, designed to freely enable third party development,
potentially across these other topics.

We deliberately make no attempt to align to any standard (e.g. SBTN, TNFD, ESRS)?; rather, we seek
to define the best possible data solution for gaining accurate and meaningful insight into impact on
biodiversity and ecosystems. Fortunately, there is significant organic alignment emerging, with most
standards, such as TNFD, recognizing the location specificity of biodiversity and the consequent
need to apply a geospatial approach. Furthermore, the approach outlined within this document

can be adapted to standards and arranged to follow existing or future frameworks or classification
schemes (e.g. ENCORE), if required.

While much can be done today with existing data and approaches to define biodiversity and
ecosystem impact at project to sovereign scales, a significant revolution is required to move from
current isolated one-off insight to having analysis-ready data embedded into existing financial
systems reporting week-on-week the biodiversity and ecosystem impact for 95%+ of listed
companies, including supply chain impacts.

This major step change will require a diverse range of actors to collaborate in building standards and
the data infrastructure that will allow ongoing collaboration on data and methods to iteratively test and
benchmark data solutions. Fortunately, this does not require novel technology; indeed, existing and
ongoing developments in data capture, compute and machine learning are well positioned to support
the increasing diversity of highly motivated actors keen to solve the biodiversity puzzle. Instead, the
challenge will rest on how quickly and effectively collaboration can be achieved.

This document is then a call to action, raising concepts for discussion as to how collectively
we might rapidly revolutionize ‘biodiversity’ impact insight — and help factor the externalities
of these impacts into the financial system.

BOX 1-WHAT IS IN ANAME? GEOSPATIAL ESG OR SPATIAL INTELLIGENCE?

The emerging field of applying geospatially derived insight within finance for ESG-relevant
insight is sometimes referred to as ‘Spatial Intelligence’,® ‘Geospatial ESG’,* etc., and through
data triangulation overlaps with other related fields such as ‘Open-Source Intelligence (OSINT)’

(See Page 53). Here we refer to the emerging field as ‘Geospatial ESG’, to place focus on the
idea that this approach is specifically designed to provide insight into ESG, rather than for
wider financial applications, such as predicting soft commodity prices. Although we have

no opinion on or preference for any specific term, it seems probable that a single term will
organically evolve for the field.




RECOMMENDED
ACTIONS

We suggest the following key actions, to radically improve
biodiversity insight at the scale required.

JOIN THE CONVERSATION

To push forward the concepts outlined in this document,
WWEF will shortly launch a ‘Geospatial ESG Consortium’. We
welcome financial institutions, conservation actors, tech, earth
observation, remote sensing, ESG providers, etc. interested in
the emerging field to join us.

CREATE A ‘BIODIVERSITY DATA COMMONS’

We need to move away from siloed, standalone platforms to

a ‘platform of platforms’ federated approach which enables
improved data access and interoperability of asset and supply
chain data, and observational data — integrating into the
financial sector’s data ecosystem.

Action - A ‘data commons’ needs to be established to
enable actors to share critical asset and observational data,
models or approaches — openly, securely or behind an FI’s
firewall — with robust standards. This needs to radically
improve access to critical asset and supply chain data to
enable assessment and, critically, the building, sharing and
iteration of models and methods.

CHANGE CORPORATE DATA DISCLOSURE / ACCESS

Every asset on Earth needs to be geolocated, and accessible
in either open or proprietary datasets (within the data
commons). Ownership must be accurately maintained, and
ideally asset datasets should be sector specific, capturing
wider attributes and defining the property boundaries.

- Action - An ‘asset registry’ is needed within the data
commons, uniting via a federated approach, ongoing open
data disclosure and regulation initiatives. While placing
the primary burden of generating and maintaining asset
datasets and company trees onto the corporates.

« Action - Develop means to enable the sharing of supply
chain data between a corporate and Fl securely within the
data commons.

Maxar WorldView-2 satellite image showing Pearl Hermes Atoll,
on September 15, 2011. Satellite image © 2022 Maxar Technologies.

DEVELOP AND REFINE OBSERVATIONAL DATA

Clarity needs to be created around biodiversity and ecosystem observational data, defining robust
metrics. Metrics need to be tested and openly reviewed as to their ability to detect the variable under
measurement.

« Action - The ‘biodiversity’ community should:

- Align to existing efforts such as GEO BON and GBIF; provide support and iterative
guidance as to which observational datasets, and the metrics derived
therefrom, are scientifically robust and how they might be improved.

+ Action - The Satellite Remote Sensing (SRS) communities should:

- Align to existing efforts, and collectively identify spatial or temporal gaps and any
possible means of improvement of the observational data portfolio, either via more
regular higher-resolution data gathering or alterative solutions.

- Explore with the wider community novel approaches, such as data triangulation, or the
testing of specific novel metrics.

DEVELOP AND REFINE METHODS AND MODELS

As an emerging field, the core methods of geospatial ESG for biodiversity and ecosystem insight
remain fluid. Critically, areas such as the framework, area delineations, global baselines and
models determining topics such as, indirect impacts or landscape condition, need to be collectively
worked through.

- Action — Researchers (perhaps via structured working groups) need to provide clarity on the
optimal methods and approaches. Results should be peer reviewed and published when possible.

CREATE STANDARDS

Across all this work — ranging from basic arrangements for asset datasets to data security protocols -
soft, technical standards need to be developed.

« Action - Open-source standards need to be rapidly deployed to aid developments — a large
resource of existing technical standards exists which could be adopted.

ALIGN WITH CLIMATE

Many of the data needs of the ‘biodiversity’ space directly align with the needs of the climate space
and wider ESG needs. Almost all ESG efforts, for example, would benefit from improved access

to financial data, asset data and supply chain data. While eventually, since climate and nature are
interlinked issues, the two will need to be considered together, as and when the data science allows.

- Action - Engage with ‘climate data actors’ early on, when developing data commons, frameworks,
metrics, standards, etc., to identify opportunities for alignment.

CREATE A ‘CENTRE’ TASKED WITH DELIVERING THE INCLUSION OF CLIMATE AND NATURE
GEOSPATIAL INSIGHTS INTO THE FINANCIAL SYSTEM

Ultimately if no-one is made responsible for the above, it is likely that progress will stagnate, with
commercial actors unable to resolve the public good aspects of the equation. To ensure the work is
delivered, an independent international research centre needs to be established — connected with
existing efforts but tasked and resourced to ensure the delivery of SRS data, methods, models and
public data utilities to aid localized, regional biodiversity and ecosystem insight and interlinked social
and climate issues.

- Action - The government/s which take the initiative on the establishment of such a centre or
federated model will place themselves at the heart of the next revolution: the inclusion, via the
full weight of the SRS sector’s power, of environmental and climate externalities into the
financial system.



KEY POINTS

The financial sector is not interested in ‘biodiversity’ — the
variability among living organisms and ecosystems — per se
but in defining the impact of specific commercial assets on
changing (+) biodiversity.

To define biodiversity trends, it is necessary to look

at change within the context of ecosystem condition.
Ecosystems can be simplistically thought of as complex
machines, like mechanical watches, where all the parts —
species — function together and cannot function apart. They
are perfectly balanced to optimize the energy within that
system while still being able to respond to and recover from
external shocks and disturbances.

Ecosystems face a vast range of potential impacts, from
localized humanity-driven issues (e.g. habitat clearance,
pollution, etc.), through natural issues (e.g. volcanoes,
earthquakes, flooding) to overarching global issues (e.g.
climate change), all potentially reducing their ability to

function and maintain biodiversity.

Due to impacts cascading through ecosystems, one
damaged ‘cog’ can damage other components: removing

1 km?2 of a 100 km? rainforest or 1 out of every 100 species
does not necessarily merely translate to a 1% biodiversity
loss; over time, if a critical component, it could negatively
alter the ecology and biodiversity of the entire forest (100%).

Traditional ecology, conservation science - in-situ field
research — offers the best insight into how human activities
impact specific ecosystems. These field studies take
significant time and resources.

It is often challenging to translate field research into generic
ex-situ models and rules for ESG insight, where thousands of
models would be required to cover the multitude of possible
impacts for each ecosystem, each sufficiently unique with
specific localized ecology. Confusing matters, often several
impacts occur on ecosystems at the same time. This variety
and complexity makes defining biodiversity and ecosystem
impacts and the extent of cascading and cumulative damage
extremely difficult to capture with only ex-situ data.
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OVERVIEW

The term ‘biodiversity™ has risen within the financial sector to become the byword for discussing any
issue related to the natural world. In a similar way that ‘climate’ has become synonymous with describing
any issues related to human-driven climate change.

In almost all cases, the financial sector is interested in changes to biodiversity, where the focus is on
trying to define the impact (xve) of a commercial entity (e.g. asset, corporation, portfolio, nation) on the
natural world.

In short, Financial Institutions (Fls) need to know, What is the nature-related impact of X?°
Before we can begin to answer that question, we need first to be clear on what biodiversity is, what
ecosystems are and how we might best measure impact on the natural world.

WHAT IS BIODIVERSITY?

In essence, ‘biodiversity’ relates to the green bit — the stuff that rustles, bites and squeaks. The bit we
have a tough day trudging through on our latest misguided outdoor adventure. It is the wealth of ‘nature’ -
a concept we all know intuitively. For discussions within financial applications, this loose definition, often
understood as the number of animals and plants present, is enough.”

What is important to know is how ‘biodiversity’ works; from that we will be better positioned in trying to
look at how we might measure impact to it.

Gy = -
A

Figure 1 — An ecosystem can be
thought of as a little like a mechanical
watch, where all the species, like
cogs in a watch, fit and move
together as a single unit. And where
one change to a species, one cog,
cascades through the system.

BIODIVERSITY AND ECOSYSTEMS

For financial applications, we are rarely primarily interested in the number and
diversity of species present in an area, the actual ‘biodiversity’ of a site. Instead,
we are interested in the health of those species, their trends — are they stable,
going up or going down? How much damage, or recovery, is occurring? And
how much of that change can be assigned to a specific commercial asset?

For that we need to look at the ecosystems.?

An ecosystem is a group of species which survive together. Salt marshes, coral
reefs, mangroves, grasslands, rainforests and cloud forests are all types of
ecosystems. Different ecosystems can occur within other wider ecosystems,
such as a stream within a woodland.

Each ecosystem is like a perfectly functioning mechanical watch, each with
thousands of parts — tiny springs and cogs - all fitting and working perfectly
together (Figure 1). Each species is a cog within that system, each with a
defined role to play, which often cannot be replicated as well by another
species. Each is highly efficient at its role.




Over millions of years of evolution, the collection of species that make up an ecosystem have
evolved together to maximize, as efficiently as possible, the energy within that system — with
checks and balances to ensure stability. Designed to function in a particular medium (i.e. within
a set range of temperature, rainfall, salinity, etc.), they are machines of breathtaking perfection.
Inefficient species, like a chipped cog, are likely to evolve or be replaced, and in doing so often
have knock-on effects — effectively subtly redesigning the whole system over time: changing
the arrangement of other cogs, in turn altering other species. If the ecosystem itself naturally
becomes too inefficient, or the medium around it changes too extensively, it is likely to collapse
or be overtaken.

Human-altered areas of nature, such as golf courses, farmland or gardens, can contain
significant amounts of biodiversity. They are, however, unlikely to be optimal or well-performing
‘ecosystems’, but more often will be a chaotic mess of species, maintained in stasis by our
design, where without human intervention, the habitat would eventually revert to the ‘original’
ecosystem. Any species introduced from outside the original arrangement (e.g. garden plants
imported from overseas) would most likely over the long term either become invasive, altering
the original ecosystem, or die out, unable to support themselves.

Ecosystems, like a watch, are a single unit. Just as you cannot have half a fully functional
watch, you cannot have half a fully functional ecosystem. Species, then, survive together

in stable fluctuation, as a unit, where their survival — and the ecosystem’s ability to provide
humans with essential goods and services - is entirely bound to the integrity and condition of
the ecosystem/s they exist within.®

It is this ecosystem condition, and changes to it, which we will need to understand if we
are going to be able to answer the question, “What is the nature-related impact of X?”1°

IMPACTING ECOSYSTEMS AND BIODIVERSITY

Although ecosystems are often highly resilient, there are many ways to damage their functions.
For example, shifting them from high diversity of species to simpler, poorer assemblages will
limit their ability to function and provide wider ecosystem services.

A huge grassland once reached from France to Alaska across Siberia. Despite the colder
climate than today, the ecosystem was more productive, supporting woolly mammoths, bison,
musk ox, woolly rhino and giant elk. It is thought that this is because the large mammals
recycled critical phosphorus and nitrogen. Through grazing they kept plant matter from

being locked away in a frozen peat layer and in reach of the plants and creating a productive
landscape. When the larger mammals went extinct, the decaying plant matter built up, creating
an increasingly acidic peat layer, the nutrients cycle became clogged and the plants became
poorer in nutrition. Today’s tundra, despite being warmer, is less productive, unable to support
such large assembles of large mammals. Sadly, such phase shifts from high to low diversity
and productivity are not just interesting insights from the past; they’re happening today, at
increasing frequency. Perhaps the most iconic is the ongoing fate of coral reefs.

It is critical to understand that not only can we impact ecosystems, but we can damage
them beyond a point of no return - resulting in ecosystems of permanently lower
productivity. Indeed, the situation is so extreme that human-driven species losses are pushing
close to the precipice of the sixth mass extinction, where species loss over the last century is
100 times higher than the background rate' and from which there can be no rapid recovery.
We know from the fossil record that after major extinction events, the natural rebalancing and
recovery of these ecosystems (and the benefits and stability they provide) is likely to take at
least five million years,'? a timescale which is meaningless to humanity.

Understanding where, how and to what extent commercial actors are damaging the natural world
is then a priority, and without measurement, accountability will remain elusive. To begin to assign
impact, here we simplify impacts to ecosystems into two groups: i) direct impacts,'® the loss

of habitat within a given area, and ii) indirect impacts, impacts that, without significant habitat
destruction, damage, degrade or undermine in some way the ecosystem condition, either for a
given area or ubiquitously (e.g. GHG emissions causing global climate change).

Direct impacts are simple to understand, destroying part, or all, of an ecosystem, (e.g. clear
felling the forest). Indirect impacts, partial damage to ecosystems, are often far more subtle but
sometimes just as impactful. Indirect impacts come in many forms; some examples are as follows:

+ We can damage a single part of ecosystem, one cog, or a small group of parts. We can
remove one species (e.g. rhino poaching) or isolate one population from another. We can
cause damage to one species, one part, which can cascade through the system casing
havoc, or be absorbed and recovered from.

+ We can also do the unexpected, such as introduce new parts into the watch. Introducing
new species, known as invasive species, can cause all kinds of unpredictable problems and
become a ‘green cancer’. Imagine jamming a new spring or cog into a watch; what would it
do? It's unlikely to make it work better, and this is the case with the natural world: new species
introduced by humans across the earth have caused havoc - the extinction of native species
and the breakdown of native ecosystems, which have cost billions of dollars. Two species
alone, the American bullfrog and brown tree snake, are thought to have collectively caused
$16.3bn in global damage since 1986."

+ We can fragment and divide ecosystems, like pulling the teeth of cogs just a little bit too far
from another to function. Fragmented ecosystems can create areas of habitat too small to
support the species present.

+  We can pollute natural spaces, with light, noise or chemicals, killing or injuring species, causing
birth defects and lowering species breeding success.

+ We can also cause indirect impact in overarching ways by globally changing the medium
in which the ecosystem operates (e.g. changing the temperature or the ocean’s salinity).
Ecosystems respond to these global changes by slowly shifting location over decades and
centuries, moving altitude or latitude to a more suitable climate. However, if the pace of change
is too fast or there is no space for the ecosystem to move to a more suitable medium, it will be
lost. Such overarching pressures are also highly likely to weaken its resiliency to other threats.

Complicating the understanding of ecosystem impact is the fact that because each ecosystem
is unique - its own unique ecological design and physical situation - it has its own unique
vulnerabilities, which can change over time (e.g. seasonality). On top of this, impacts often
combine and may grind away for decades before becoming apparent. Indeed, situations arise
where environmental assets can be in what is known as ‘extinction debt’. Somewhere within
the ecosystem, a function has broken (e.g. seed dispersal of a key tree species), and without
conservation intervention, over time (potentially hundreds of years), it will slowly degrade from
high to low diversity.

Ecosystems then can be damaged in a variety of ways — but the extent of any given impact can
be hard to predict. Just as with a watch, direct and indirect impacts can cascade through the
system. Happen to damage the wrong cog, the wrong keystone species, pull the wrong cogs
apart, introduce parts, and the whole system can break down; at other times, the ecosystem
absorbs the damage and almost nothing happens.

Damage to ecosystems and biodiversity then is not a linear percentage. Removing 1

km? of a 100 km?rainforest, or removing 1 species out of 100 within that block, does not
translate to 1% loss of the rainforest’s biodiversity. It might, in time, recover and equal 0%
or cascade in impact. If that block of habitat happens to be an important cog for keystone
species, a breeding area or a food or water resource, this could potentially over time cause
changes to the ecology and species present, across the whole forest.
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BOX 2 - ECOSYSTEMS OR BIODIVERSITY?

Throughout this document we use the terms ‘ecosystem’ and ‘biodiversity’ to describe impact to the
natural world. Why both? Why is it not biodiversity OR ecosystem impact?

The condition of ecosystems defines their ability to function, to maintain processes and structure, which
defines the survivability of biodiversity with them. As we look to develop simple metrics for financial
application, it is vital that we prioritize insight into impacts reducing ecosystem condition, as this better
captures the holistic impact of an asset.

Common metrics designed around prioritizing ‘biodiversity’, such as endangered species density, often fail

to capture wider changes to ecosystem condition. We can define the endangered species likely to be within a
given area, but that doesn’t necessarily tell us about the wider status of the ecosystem/s. For example, there
are many small islands around the world filled with endemic species; the species present, due to being found
only on that island, have naturally small populations, or ranges which qualify the species as being listed as
rare or endangered, creating a high density of ‘endangered’ species. And yet in some cases, the health of
those ecosystems and species may be robust (e.g. the Galapagos) - it is just that they happen to be sites with
extreme endemism’®.

Yet of course an understanding of the biodiversity present within an ecosystem is important as it provides
context for the relative conservation and genetic values of a specific site.

Consequently throughout this document we refer to both, ‘ecosystem and biodiversity’, acknowledging that
we must first understand ecosystem condition while framing those insights within an understanding of the
biodiversity present.

To manage expectations, it is difficult to define ecosystem condition with ex-situ data alone, and impossible
to gain robust insight into all the hyper-detailed components of biodiversity change within a given site without
in-situ data. The practical reality is that global scale ESG insights will be limited to high-level overviews of
landscape condition and averaged proxy metrics for ‘biodiversity’. However, as we’ll show, this is perhaps the
right level of detail to begin to identify across millions of assets those with higher (concerning) nature-related
exposure and impact.

HOW MUCH DAMAGE CAN WE REALLY DO?

Earlier we discussed indirect impacts, noting that the removal of just one species can cause damage to
the ecosystem. Often it is difficult for people to understand the true extent of damage one minor change
can bring, so we provide an example. Sea otters (Enhydra lutris) were once widespread; as a result of
being hunted for their fur in the 1700s and 1800s, their numbers plummeted. In the North Pacific, otter
absence led to an explosion in their prey, sea urchins, which overgrazed the kelp forests, reducing them
to what is known as urchin barrens — areas of far lower species assemblages (Figure 2).'8"7

Figure 2 - From Rogers-Bennett et al., 2019; photos showing the ecosystem shifts observed for kelp forest

. N . . canopy (top), subcanopy (middle) and benthose (bottom), pre-impact (a-c) and post-impact (d—f). Photo credit:
With the collapse of the kelp forests came the loss of the biodiversity and the ecosystem services CDFW (K. Joe (a,c,e); L. Rogers-Bennett (b): C. Catton (d,f)).

provided — such as food provision, dampening of wave propagation and mitigating associated impacts
such as coastal erosion, sedimentation, etc. Now research is showing that the massive calcareous reefs
built by algae over thousands of years within the kelp forests are now rapidly eroding due to massive
overgrazing by sea urchins, at rates worsened by climate change impacts.'®

Sadly, collapse brings with it not only significant biodiversity loss but often severe long-term socio-
economic consequences. The Aral Sea in Central Asia was once the world’s fourth largest inland lake, a
significant fishery and agricultural region. Water division and overextraction led to declining water levels
and more concentrated pollution within the lake (Figure 3). Fish stocks collapsed, as did the ability to
support agriculture in the region. Economic ruin followed, and the mass migration of the local population
away from the once thriving region. Today, dust storms generated from the dried lakebed sediments laced
with pollutants pose a public health hazard and further degrade the surrounding soils (Figure 4).
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Figure 3 — Nine MODIS images showing the extent of the Aral Sea from 2000 to 2013."°

Figure 4 — A satellite image taken March 24, 2020, showing how the Aral Sea, once a giant body of water,
is now a source of pollutant-laced dust, an ongoing public health hazard and continuing to degrade the

fertility of soils in the surrounding area.®
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The story of the Aral Sea is sadly iconic, and often it’s all too easy to dismiss the issue as Soviet era
mismanagement, something which couldn’t happen again. Unfortunately, as we move into the climate
change era, tolerances for ecosystem mismanagement will decrease — and the likelihood for major
ecosystem collapse increases dramatically.

As an example, the Great Salt Lake of Utah, the largest saltwater lake in the Western hemisphere, is an
important site for over ten million migratory birds — it is a regionally relevant ecosystem. It also helps
support the region’s economy, generating millions of dollars from tourism and mineral extraction.

It is enduring a 22-year-long drought, and water levels have now dropped to the lowest level recorded,
exposing 2,000 km? of lakebed (Figure 5).2!

Figure 5 — Satellite images showing the 2,000 km?loss of Utah’s Great Salt Lake from 1985 to 2022. Image left composite of summer
acquisitions from Landsat 5 satellite; image right the Copernicus Sentinel-2 mission on July 4, 2022.22

As the water level decreases, the concentration of pollutants (heavy metal pollutants left over from mining
activity in the region) increases, as does the water’s salinity. This stresses, and can kill, the shrimps

and invertebrates which the migratory birds feed on. It exposes a larger area of lakebed, creating more
fine dust pollution — which, mixed with heavy metal pollutants, poses a risk to public health, causing or
worsening respiratory illnesses.

While the lake goes through seasonal cycles of water loss, replenishing after the snow melt, and will
increase in volume later in the year, if extraction and evaporation continue to exceed the amount of water
entering the lake year on year, issues are going to escalate until the ecosystem collapses.

There is the temptation to think that the collapse of these far-off ecosystems mean little to my world or
business. And indeed, one cut isn’t a problem - but they add up. For example, in 2016, 40 million (76 km?)
of mangrove trees died in Australia due to exceptional low sea level caused by El Nina,?® making it one

of the worse mass tree diebacks and releasing nearly a million tons of carbon into the atmosphere. The
mangroves have not since recovered, aggregating climate change impacts and damaging a commercial
fishery. Unhelpful, but arguably still distant; but how many dieback events, coral bleaching events,
invasive species, wildfires and overextraction of ground water can there be until widescale ecosystem
collapse is a problem for Australia’s economy and society, and then globally?

Sadly, the issue of ecosystem collapse is not isolated but present across the globe, where decline in
biodiversity is unravelling ecosystems’ abilities to function. Indeed, in 2020, Swiss Re reported that for a fifth
(20%) of all countries, ecosystems are in a fragile state — with over 30% of their land mass compromised.?*

Undoubtedly then, we are capable of and are actively destroying and crippling ecosystems - and
with them, their functions that support economies and humanity.



CAN WE MEASURE BIODIVERSITY AND ECOSYSTEM CONDITION?

For decades, understanding biodiversity and ecosystem
condition at scale (national and global) has been a priority
for governments, NGOs, IGOs and other practitioners,
where, understandably, actors have been keen to find
inexpensive and practical means to generate information to
inform areas for prioritizing action, monitoring performance
and aiding decision making.

Broadly speaking, the world of defining biodiversity and
ecosystem condition can be divided into two categories,
those which use detailed field data collection in-situ, and
ex-situ approaches which do not. For our application,

IN-SITU

Unravelling the extent of damage caused by any one asset
(e.g. a factory, a palm oil plantation, a road), is highly site-
specific and often extremely complex — often requiring
months, if not years, of intensive field studies to first define
the status of the original ecosystem and the species present,
and then unpick the consequences of the impact.

This is because each ecosystem is unique, with unique
physicality and species arrangement. Consequently, the
specific location of impact is a determining factor, where
even within the same ecosystem a slightly different location
of impact can result in vastly differing outcomes. The time of
year can also change the significance of the same impact (e.g.
breeding season). On top of this, each impact is unique. No
two oil spills, road developments or wildfires are the same.
Complicating matters is the fact that rarely is an ecosystem
impacted by a single impact. Commonly ecosystems face
multiple impacts simultaneously (e.g. drought, habitat
fragmentation, invasive species, selective hunting pressures,
water pollution, light pollution, climate change, etc.).

For example, the Biological Dynamics of Forest Fragments
Project (BDFFP) has run since 1979, looking at the impact

of forest fragmentation in the Brazilian Amazon rainforest,
assessing 11 sites of different-sized forest blocks (1-100
hectares).?® By monitoring physical and ecological changes
in the blocks after their fragmentation, researchers showed
certain species became locally extinct in the smaller

blocks, evidencing how edge effects?” changed the forest
microclimate, carbon storage, tree mortality and ecology
(the species interactions). They were able to show that not all
fragmentation has equal impact, varying in intensity according
to edge age, number of edges, adjoining vegetation, etc.

and hence showing how changes to land management of
bordering habitat often creates markedly different outcomes.

The BDFFP uncovered many specifics as to how ecosystem
structure and biodiversity within varying sized blocks of

forest changed, when divided. It took years of detailed study,
measuring the water content in leaves and the humidity

on transects, assessing vegetation plots, and monitoring
changes in species composition and diversity — over decades.
Animals and trees can live long lives, so any impacts can take
decades to play out, requiring long-term study to document
how the composition of a forest has changed.

where we need insight at a global scale across millions of
assets, solutions must primarily be ex-situ, as field data
collection is impractical.®

There are, of course, an established literature, methods and
science for conducting in-situ environmental assessments
studies at the project level, corporate biodiversity guidelines,
etc. Here, however, we focus on the overarching conceptual
challenges of determining in-situ impact from a conservation
science perspective - to aid insight into the difficulties of
defining ex-situ impact.

The BDFFP provides an example of how much effort and
time it takes to understand one impact - forest fragmentation
—in one ecosystem. And yet the learnings cannot easily be
transferred to other sites. Each forest, each ecosystem, is of
its own design, and consequently, responses will vary, even
between areas within the Amazon. Of course, robust field
studies on the specific implications of a specific development
(e.g. road, dam, agricultural expansion) on a specific
ecosystem, such as the BDFFP, can be simplistically translated
and integrated as proxy guides into ex-situ assessments,
giving generic rules, such as the extent of edge effects (e.g.
100m bordering impact), within a given forest type.

Unfortunately, long-term studies, such as the BDFFP, from
which to develop ‘generic rules’ are not widely available. This
is because there are hundreds of potential combinations of
ecosystems and impacts, many of which have not been well
studied. Those which have, like the BDFFP, require significant
expertise, time and resource to extract their learnings for ex-
situ geospatial insights.

Let’s consider a real-world example: the Chalillo Dam was first
proposed in the 1990s in the Central America tropical forests
of Belize (Figure 6). After Duke Energy moved away from the
project, the Canadian company Fortis developed the dam with
Chinese participation in 2002.28

The dam is based on the Macal River, in the Maya
Mountains.?® The valley was one of the last blocks of pristine
riverine habitat in Central America. Detailed field studies prior
to construction, commissioned by Fortis for the EIA, were
conducted over four months led by a biologist from London’s
Natural History Museum. 2° The team documented, via in-

situ field study, that the area was ‘a rare and discrete floral
floodplain habitat which acts as both a conduit and critical
habitat for resident and non-resident fauna and avifauna’.
Tapirs (a large herbivore) used the river as a critical food cache
during the dry season. Neotropical migrant birds used it as a
waystation. The predicted biodiversity impacts of the dam on
the valley and river were documented as ‘major, long-term and
regional in extent,’ 3! arguably fracturing the Mesoamerican
Wildlife Corridor.

Figure 6 — Satellite image of
Chalillo Dam, Belize showing
the extent for the immediate
area flooded.
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The Chalillo Dam, whether a positive for national energy security and renewable
energy generation, remains a controversial project, with disputes and issues ongoing
since its construction.®

Irrefutability it caused significant biodiversity loss, a loss well beyond the immediate area
flooded, probably changing the breeding success of key species within the immediate forest,
changing the wider forest ecology and changing much of the freshwater biodiversity along
the entire length of the Macal River — an impact which is almost certainly being felt, along the
length of the river, the forest and within local communities today (Figure 7). To truly begin to
know would take sustained long-term in-situ field research.

Figure 7 — Map showing the
full length of the Macal River,
arguably all impacted by the
Chalillo Dam, Belize.




EX-SITU

The Chalillo Dam serves to provide a rough sketch of the
difficulty, even with in-situ data, in defining and quantifying
the actual direct and indirect ecosystem and biodiversity
impact of a commercial asset across all scales (locally,
regionally, etc.).

From the ex-situ data perspective, it is more challenging
still. Generalized rules cannot easily be applied, say taking
the learning from BDFFP, to the Chalillo Dam, as they are
sites with different species, different ecology and different
impacts (flooding vs. fragmentation). Then there is the
issue of biodiversity and ecosystem specificity — could an
ex-situ solution have the necessary specificity to capture
these hyper-localized indirect impacts, such as removing
or damaging Tapir seasonal food caches? Or be able to
define and assign the extent of the impact on migrating
birds which pass through the region? And how could that
be quantified to provide an overall comparable insight into
the impact of Chalillo?

The importance of ecologically intact sites for conservation
goals has long been recognized, and being able to identify
and determine trends without the need for expensive

and time-consuming surveys of species presence and
abundance has long been an objective in the field. As a
result, a large body of research, spanning decades and
across disciplines, has arisen — attempting to provide ex-
situ solutions into topics such as ‘ecosystem condition

or integrity’. This world is complex, with overlapping
terminology and methods. Approaches are varied;
solutions range from generalized global scale insight, target
conservation action,® defining intact habitat®+,%

or anthropogenic impact®®,” to multi-metric site
assessment models?,2°,

Essentially, for our purposes here, it is enough to know that
there are myriad approaches, some requiring the partial
use of in-situ data. Different approaches have arisen in part
due to different needs, but also because of disagreement
on where emphasis should be placed - on different
components (e.g. abiotic*® and/or biotic), differing aspects
(or combinations) of diversity (i.e. unique species, biotic
communities, ecological systems, or geophysical) or on
different functions, such as importance of the geophysical
environment*' rather than emphasizing the maintenance

of ecological functions. It is important to reflect that while
conservationists will agree that ecosystem condition/
integrity is essential for the protection of the natural world,
the complexity of the concept*? has made defining the
measurement difficult — and as of yet there is no consensus
on a preferred approach for any specific application (e.qg.
conservation planning).

Perhaps one area of potential value for geospatial ESG
applications, although not without its critics,*? is the concept
of the ecological integrity assessment, defined as ‘an
assessment of the structure, composition and function of

an ecosystem, as compared to reference ecosystems

operating within the bounds of natural or historic disturbance
regimes’.** One example was developed by NatureServe

and used to develop ecosystem-specific ecological integrity
insight for wetlands and temperate forests. It is a mostly ex-
situ approach that combines both biotic and abiotic values to
provide insight into the ‘integrity’ of an ecosystem.*®,4¢

As well as developing and defining new metrics and
approaches, where for example Group on Earth Observations
Biodiversity Observation Network (GEO BON) has been
working to develop a set of twenty Essential Biodiversity
Variables,*” other approaches, designed from a different but
related perspective, have looked at the question from the
data collection standpoint. Specifically, a paper by Hasse

et al.*® has looked at merging two global initiatives, the
International Long-Term Ecological Research (ILTER) network
and the GEO BON working towards harmonizing frameworks
and integrating individual monitoring initiatives centred on
ecosystems - to provide insight at scale. This development,
aggregating and amassing in-situ data (and others,

such as Resolve and GBIF), is of interest as in-situ data
aggregated at scale are highly valuable for refining and
improving ex-situ data and approaches but it also serves
as a recommendation as to what variables need to be
captured for holistic insight (Figure 8).

The critical point is that significant research exists and

that there are significant ex-situ data challenges in
characterizing landscape condition. Of course, significant
further development is required to refine and improve these
approaches (metric correlation to ecological condition,
quantifying relationships and transferability of metrics,

etc.). That said, the geospatial ESG use case is arguably
significantly less technically demanding than conservation
applications, where we are attempting a high-level screening
rather than the design and prioritization of conservation
interventions. Current methods, or even simplified
adaptations, are hence likely to be capable of providing useful
insight for geospatial ESG applications. And as more data
become available (via more satellites in orbit, aggregated in-
situ data efforts, etc.) and more research is directed into this
area and application, we can expect improved insight.

Fortunately, within the geospatial ESG approach
discussed in this document, no decision needs to be
made as to what components (abiotic or biotic or both) or
aspects (unique species or ecological systems) need to
be prioritized. As a data- and model-agonistic approach,
any one or multiple approaches can be applied. New

data or models can be added or older ones replaced or
updated, allowing the user or a machine rationalization
to make determinations as to what set of data or model is
appropriate for a specific geospatial ESG application.

The next section goes into detail on the current data
landscape and what approaches currently drive Financial
Institutions’ understanding of nature-related impact.

E1 components Recommended variables / observations

and basic
indicators
Habitats Habitat / land cover
Soils
= Soil moisture content /temperature
2
(0]
[e)]
>
ﬁ Soil texture, bulk density, pH, C°rg
Q
S Water Water quality: water temperature, pH, electrical
g conductivity
Air Air temperature, barometric pressure, incoming
short-wave radiation, wind speed / direction,
precipitation, humidity
... of birds
... of butterflies
Abundance of
identity ...of bees
... of ground beetles
Fauna
.%’ ... of benthic invertebrates
o
% Species richness in soil
Q
kS
m Terrestrial species diversity
plora Abundance of vascular plants
w;tl:iltr;t Vertical forest structure (stand height; tree
. height, tree diameter)

Concentration of CO,, water vapour, albedo/
radiation budget, soil heat flux, climate
variables.

Energy budget Leaf area (Index, LAIl)

Primary productivity (biomass above ground)

Transpiration
Wet / dry / bulk atmospheric deposition

Discharge surface water; spectral absorption
i e e coefficient; DOC; nutrients
Soil water chemistry

Hydrological discharge; discharge, water
temperature, pH, electrical conductivity

Groundwater; level, temperature, specific
Water budget conductivity
Throughfall and stemflow

Snow depth

Recommended site-based instrumentation EBV classes to be
and measurement informed

Habitat mapping, remote sensing

Measurement beyond the point scale,
e.g., cosmic ray probes, wireless sensor
network,e.g., Time Domain Reflectometry
probes

Soil inventory / basic mapping of soil physical  Ecosystem
and chemical properties structure

Standard water quality probes

Standard climate station

Point counts / transects
Transect counts

Combined flight traps

Pitfall traps Genetic
composition,

Multi-habitat- sampling species
populations,

eDNA (environmental DNA; species detection) ~community
composition

Automated multi-sensor station for monitoring
terrestrial species diversity (AMMOD);
identification based on DNA metabarcoding

Vegetation survey during the phenologically
most appropriate time

. 8 Ecosystem
Standard forest inventory / remote sensing .
Eddy-flux covariance station
LAl optical sensor
Light Detecting And Ranging (LiDAR); use of
data from forest inventory
SAP-Flow-measurement
Deposition samples

Ecosystem

Optical sensors;multi-parameter probes function

Soil water samplers and analysis

Standard gauging station including
measurements of basic physical variables

Groundwater station

Throughfall samplers, stemflow collectors

Optical sensors

Figure 8 — Table from Hasse et al.*® suggesting recommended variables, measurements and
instrumentation for terrestrial, freshwater and coastal environmental monitoring sites considering the
ecosystem integrity (El) and essential biodiversity variables (EBV) framework; note that while some are
possible with ex-situ measurement or proxies many are not possible with ex-situ measurement.
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standalone geospatial or footprinting tools.
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generate sufficient specificity and precision to provide
informative results that be used to effectivity align capital
away from biodiversity impact.

- A major reason for a lack of objective, consistent,
comparable, pre-processed results defining ecosystem
and biodiversity impact is due to the ex-situ data
challenges in capturing and estimating impact for
unique assets and their activities (e.g. gold mine) in
unique ecosystems with unique vulnerabilities which
may shift and change due to seasonality and wider
landscape or global impacts (e.g. climate change).

In addition, there is a universal lack of access to robust
asset and supply chain data to enable insight.

Such supply chain data, commonly unavailable, is vital
to understanding a higher tier company’s impact

(for example, the vast majority of an electronic chip
manufacturer’s impact will be in its supply chain).

+ Nature-related insights remain difficult to achieve within
the limits of the data available. Consequently, it may prove
more effective and productive to simply improve the
quality and extent of asset and supply chain data available,
rather than attempt to find ever more complex means to
circumnavigate data limitations for marginal gains.

© VDOS Global / WWF-Canada



CURRENT APPROACHES TO MEASURING ‘BIODIVERSITY’

Financial institutions are increasingly interested in the topic of ‘biodiversity’, where both risks
and opportunities may be present. A recent Robeco survey of roughly 300 large investors
(representing approximately USD 23.7 trillion) found that two years ago, only 19% of investors
considered biodiversity a significant factor in their investment approach, doubling to 41% today
and expected to increase to 56% in two years’ time.*® This was commonly motivated (52%) by
commitment to reducing the long-term global societal risks associated with biodiversity loss.

This perhaps comes as no surprise — the topic has long been rising on the agenda. At the
regulatory level, France published Article 29 in 2021 requiring all FIs to disclose biodiversity-
and climate-related risks.®' In the EU, amongst a raft of new legislation, the the Sustainable
Finance Disclosure Regulation (SFDR) requires companies to disclose activities that negatively
affect biodiversity-sensitive sites. The Corporate Sustainability Reporting Directive (CSRD)*
and the European Sustainability Reporting Standard (ESRS)%® will require companies with
significant operations within the EU to disclose specific metrics on the impact their activities
have on biodiversity and their dependencies on nature.

To help meet the growing demand, a range of data approaches — some highly specialized,
others more generic — have risen within ESG and related fields, designed to give full or partial
insight into the ‘environmental’ or ‘biodiversity’ implications of project, company or portfolio.
Almost all commercial and open ESG data approaches are not limited to ‘biodiversity’ but
consider and often interlink wider related variables, covering bordering topics such as climate
change, natural disaster risks, water risk, etc.

These data approaches are:

Corporate reporting

Frequently the mainstay of the ‘E’ pillar in ESG. Commercial ESG providers source the annual
sustainability and ESG reports and other literature produced by companies themselves,
aggregating this unstructured data into consistent formats and provide analysis and clear
standardized scores to facilitate peer-to-peer comparison.

Surveying
Some actors interview companies to gain ESG-relevant insights, often through a structured

questionnaire. Normally these are conducted annually; CDP, for example, reviews six questions
on biodiversity topics.%*

Unstructured Content

Specialized data providers web-scrape media articles from the internet, often applying
machine learning to identify positive and negative news stories about projects and companies.
Often reviewing tens of thousands of articles a day in multiple languages, they combine these
data points with other ESG data points to provide ‘E’ scores for thousands of companies.

Geospatially driven

Using a location point, either exact or regional, these assess company operations against
observational data to provide insight into possible environmental implications (e.g.
deforestation). To date, the approach tends to be designed around screening for project
finance, often without pre-packaged asset data, requiring the user to upload and compile
their own asset data and assessment. Examples include Global Forest Watch Pro,%®
Ecometrica,®® Maphubs®” and Integrated Biodiversity Assessment Tool (IBAT)%8. Others, such
as Asset Resolution,® Verisk Maplecroft®® and Reprisk®’, contain asset data and can in some
cases provide insight at asset, corporate and sector levels. Major business intelligence (Bl)
providers are also increasingly integrating geospatially derived assessments, to explore
nature-related topics.

Hybrid approaches

Increasingly data providers are blending the above data approaches, and additional methods
not described, to gain improved insight.

Alongside these data products, a range of standalone biodiversity measurement platforms
and data tools have emerged to support the private sector in running their own biodiversity
impact and dependency assessments. These tools are often designed around corporate use
for internal assessment but can be applied by financial institutions for additional biodiversity
performance insights into corporates or portfolios.

Biodiversity measurement tools

A vast and growing range of standalone tools and platforms, some in part drawing from
geospatial datasets, have arisen to help corporates assessing the biodiversity impact or
dependency of their operations. There is a wide universe, from life cycle assessment tools

to localized sector specific tools. Here we focus on those more applicable to global-scale
financial application. These tools often require user inputted data (e.g. sales per segment,
total revenue, emissions, sector/s, location; often to model production/consumption using
input/output tables) and combine it with additional external data. They are mostly used at the
product, project, supply chain and, to a small extent, corporate level. Examples include:

« Biodiversity Footprint Financial Institutions (BFFI)

+ Product Biodiversity Footprint (PBF)

« Species Threat Abatement and Restoration metric (STAR)

« Biodiversity Net Gain Calculator (BNGC)

+ Biological Diversity Protocol (BDP)

+ Corporate Biodiversity Footprint (CBF)

+ Global Biodiversity Score for Financial Institutions (GBSFI)

+ Global Biodiversity Score for Companies (GBS)

+ Exploring Natural Capital Opportunities, Risks and Exposure (ENCORE)

These tools commonly incorporate a footprint modelling component that converts publicly
disclosed revenue figures into production volumes as a starting point to scale biodiversity
impact. To achieve this, they classify the various activities of a company (e.g. GICS, NACE,
FactSet’s Hierarchy). These are then combined with other open-source or custom methods
(e.g. EXIOBASE, ReCiPe/Life-Cycle Assessment) to translate production and resource usage
into a range of environmental pressure metrics, such as land-use change, CO, and CH,
emissions, and freshwater pollution. These are then often converted again into biodiversity
impact metrics, such as Mean Species Abundance (MSA) via an open-source model, such as

the Global Biodiversity Model for Policy Support (GLOBIO), or Potentially Disappeared Fraction
of Species (PDF) via the ReCiPe model.®?



CONSIDERING THE CURRENT DATA LANDSCAPE

A useful starting point from which to consider the biodiversity data puzzle is to look at the current ESG
data landscape. It is timely to stress here how similar the ‘climate’ and ‘biodiversity’ data spaces are,
using the climate data ecosystem as outlined by Climate Arc (Figure 9).6°

" Natlon?l Sector benchmark/scenarios
inventories
Third-party
Aggregation, analysis, scoring
CDP (Business intelligence providers,
Corporate ESG Data Providers)
climate data
Disclosure Transition
services performance
Figure 9 — Simplified version of the climate data ecosystem from Climate Arc, 2022. Restricted Information

If we add the ‘biodiversity’ components (Figure 10), we see an essentially unchanged landscape.
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Figure 10 - Simplified adaption of Climate Arc data landscape, adding ‘biodiversity’ Restricted Information

components, to illustrate how most data used for nature-related insight used by Fls
flows from the corporates themselves via annual ESG reporting in public and grey
literature, through ESG data providers, into the Fls. However, some FIs make major
efforts to also use third party data and tools and internal systems to triangulate results.
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While of course the ‘biodiversity’ space does not use national inventories or transition performance and
has a wider range of standalone data tools outside of the mainstream ESG space - the major flow of
data from corporates themselves into commercial data aggregators is similar in structure.

Within the ‘biodiversity’ data ecosystem, a significant volume of the data comes from the corporates
themselves in the form of documents (e.g. annual sustainability reports). ESG data providers ingest,
aggregate, clean and analyse these publicly released documents to provide insight. In many cases
they combine this data with additional third-party data, such as web-scraped news insights. Unlike
the climate data space, the biodiversity space does not have a dedicated actor, such as CDP, tasked
with systematically collecting biodiversity impacts insight (although CDP does collect some data on
biodiversity®).

There are four key points about this current data flow:

1. The ‘biodiversity data ecosystem’ aligns to the ‘climate data ecosystem’ with no significant change in
structure.

2. The core of ‘E’ in ESG data used by Fls comes from commercial ESG providers — who base their results
upon annual reporting and surveying which have a low cadence, updated once per year.

3. Additional data, such as geospatial and web-scraping insight, is often used to complement the
aggregated annual reporting within commercial ESG solutions to provide higher-cadence insights.
However, such data points are often — from an ecosystem impact perspective — inconsistent in
capturing impact (e.g. heavily biased towards sectors with asset data, or those impacts which happen
to be reported in the media).

4. Additionally, Fls, often independently of commercial ESG solutions, source additional, often targeted,
insight via standalone geospatial asset screening platforms and biodiversity footprinting tools.
These tools tend to be used for niche applications and are typically not integrated with or across the
mainstream ESG-provisioned data. These solutions often are unable to provide insight for a large
percentage of companies, lacking the necessary asset data, or are simply designed for individual
company assessment.

In the final section of this document, we will reflect again on this data ecosystem.

CONSIDERING COMMERCIAL GEOSPATIAL ESG DEVELOPMENTS

Perhaps galvanized by TNFD®®,5%¢and ESRS®’, both of which have increasingly promoted the need for
locating companies’ operations for ‘biodiversity’ insight, MSCI,®® Moody’s® and others have released
short articles on the topic. As an example of some of the issues these current approaches take, let’s
look at MSCI.

It is important to state that any limitations identified or inferred in MSC/I’s approach are primarily
the result of simply not enough robust data being available — and are ubiquitous issues present
across open and commercial ESG solutions and not unique to MSCI.

MSCI’s geospatial approach for biodiversity insights used the Mean Species Abundance (MSA) metric
for 2015, from the Global Biodiversity Model for Policy Support (GLOBIO), as a proxy for local biodiversity
intactness.

They state that, ‘Biodiversity-sensitive areas are intact ecosystems with minimal species loss that are
important areas for conservation efforts and are more sensitive to biodiversity-loss impacts.” They go on
to state, ‘...an asset in an area with an MSA value over the global average of 0.56 is considered to be in a
location that is more sensitive to adverse impact.”®

They found that 4,603 assets were located in a sensitive area, defined as an area with a score above 0.56
(0-1), the global area weighted mean for 2015 (Figure 11 on teh following page).
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Figure 11 — Map from MSCI
effectively showing the
overlap between MSClI’s
asset location data and

Mean Species Abundance
(MSA), indicating the local
biodiversity intactness,
derived from GLOBIO data as

of 6™ April 2022.™

Percentage of assets in biodiversity sensitive areas

@ Electric Utilities (11%)

Mean Species Abundance (MSA)

>=0.56 ® Metals & Mining (8%)

Multi Utilities (6%)

® Independent Power & Renewable Electricity Producers (9%)

0.56 ® Paper & Forest Products (6%)

The challenge here is that while the GLOBIO model is an
excellent, highly scientifically robust model, on a specific
asset-by-asset screening, the extent of human activity, or
anthropogenic pressure, within an area, is not necessarily
related to that specific asset’s actual ecosystem or
biodiversity impact, nor even its risk of impact. Naturally,
it is highly undesirable for any remaining large areas of
wilderness to be fragmented or developed. However, it
creates the potential that results will be misinterpreted, that
areas with higher scores, are ‘more’ sensitive to adverse
impact and are the only areas sensitive to impact.

A site which is surrounded by development with very low
intactness can still be of extreme biodiversity importance.
The Brazilian Atlantic Forest, of which only 11% of the
original range remains, is heavily fragmented, (240,000
blocks, average size 64 ha).” It is the last outpost for

tens of thousands of species. The far larger neighbouring
Amazon Forest of higher intactness (~68% remaining,
80,000 fragments, average size 8,376ha)’® is arguably ‘less’
sensitive to impacts since the Atlantic Forest is already
under arguably higher pressure, and further impacts are
likely to have larger ramifications for the survival of that
ecosystem and the species present than an equal area

in the Amazon. Of course, commercial activity in either
forest is highly undesirable — but the point is that on an
individual asset level, operating within sites of a lower level
of ‘intactness’ isn’t necessarily preferable, particularly if the
ecosystem of higher intactness occupies and extremely
large area and has extremely low biodiversity richness.

The second and far more pressing issue is that MSClI’s
approach, and indeed many first-generation ‘nature-related’
approaches, is that it uses proximity to ‘biodiversity’ as a
simple way to infer impact or risk of impact. Unfortunately,

as correlation does not imply causation, proximity does

not imply impact. Simply being near to the forest is not
indicative that the asset is causing an impact. Likewise, being
located far away from nature does not guarantee less impact.
Commercial operations can and have polluted waterways that
have destroyed biodiversity hundreds of miles downstream.
The acid rain caused by emissions emitted from UK factories
pre-1988 legislation travelled hundreds of kilometres across
the ocean to harm the forests and waterways of Scandinavia.
Such an approach risks biasing impact heavily on those
industries which, by the nature of their operations (e.qg.
farming, mining) more frequently rurally located.

In an attempt to get around this issue, many approaches
apply weighted industry scores, giving higher scores to those
industries and processes with known higher potential for
environmental impact/s. However, as we seek to determine
peer-to-peer performance, this is potentially unhelpful. For
example, all mines, or even of one type — say all open pit

gold mines — are not equally well managed or operated; exist
across sites with differing resilience with differing level of
biodiversity present; hence, their biodiversity impacts are
unique and specific. What matters for financial application
is understanding the ecosystem and biodiversity

impact for each asset individually - within the property,
bordering the property, regionally and globally (with
GHG emissions) — across both their primary assets and
suppliers’ assets. This is what is required to enable the
accurate differentiation between peers.

Maxar WorldView-2 color infrared satellite image of Hyderabad, India, highlights healthy vegetation in red.
Image collected on May 12, 2014. Satellite image © 2022 Maxar Technologies.
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REFLECTIONS ON CURRENT CHALLENGES

Despite the ever-growing complexity in ‘biodiversity’ data products, a major gap remains
— objective, consistent, comparable, pre-processed results, defining the ecosystem and
biodiversity impact for 95%+ of companies including their supply chains.

A simple way of demonstrating the extent of the issue is to ask which solution can currently
satisfactorily answer the hypothetical question, Which has a greater ecosystem and
biodiversity impact, BMW or Mercedes?™

Which tool, platform or data product currently provides ready-to-go results, without user
inputted data - a detailed, regularly updated (weekly) insight into the granular nature-related
impacts of these companies, or any major company, including supply chain impacts?

Unfortunately, it’s very difficult, and here’s why:

+ Biodiversity is highly site-specific. As a result, highly granular data on ecosystem and
biodiversity and the company operations are required in some form to understand their
interaction and trends over long time frames (10 years +). Such nature-related data is often
lacking or difficult to gain access to, and while the methods applied to estimate (direct and
indirect) impacts to ecosystem condition are developing, they remain inconsistently applied.

+ ‘Commercial’ impacts are extremely varied in themselves and vary in severity depending on
ecosystem condition. Assessment methods need to be tailored to each activity and each
site sensitivity, to be able to identify and accurately assign impact.

- Footprint-based/modelled approaches tend to be unable to capture such specificity —
applying sector averages and hence providing generic insight into ‘potential’ impact,
rather than insight into specific real-world impact.

+ Impacts can cascade through ecosystems and are often technically difficult to
capture and unravel.

+ Impacts frequently interact with one another within a given landscape, where multiple
companies will be operating. Unravelling responsibly for a given impact is often
extremely difficult.

+ To address issues surrounding the tragedy of the commons — where each actor does a
small amount of damage, but collectively over time the damage aggerates (cumulative
impacts) within the ecosystem — additional landscape and jurisdictional data are
required for context.

+ Impacts are constantly occurring: small-scale marine oil spills occur every day; small blocks
of habitat are destroyed each day. Data with high cadence is required to both capture

impacts which have a short exposure time (e.g. methane pollution) and support timely insight.

+ Asset data defining the location of company operations is often unavailable, making it
difficult, sometime impossible, to run geospatial driven assessments.

« Data defining supply chains (and their location) is often not disclosed — a data shortfall
that has proven difficult to fill even with efforts by commercial data providers. Since
the biodiversity impact of high tier industries is often almost entirely within their supply
chains, their inclusion is vital.

+ From a geospatial data solution perspective, current limitations on availability of
observational data creates bias and error within current data solutions — where, for example,
a lack of data drives ‘temporal false negatives’ (See Page 48).

+ Lacking robust data encourages the uptake of proxy indicators, such as proximity of the
asset to a protected area, the significance of which from an ecosystem impact standpoint is
often difficult to determine.

+ Quantifying the huge diversity of ‘biodiversity’ impacts into a single unit of measurement
(cf. a ton of carbon) - is technically extremely difficult, with no agreed approach or
measurement unit.

CONCEPTUAL CONSIDERATIONS

A conceptual threshold exists for defining an asset’s (and then corporate’s or portfolio’s)
nature-related impact, where a level of sensitivity needs to be achieved to ensure the results
are accurate enough to enable accurate insight and differentiation (Figure 12).

1.0

Upper Accuracy Threshold

Lower Accuracy Threshold

=
wl

‘Ecosystem and Biodiversity Sensitivity’

0.5 1.0

‘impact Sensitivity’

Figure 12 — Diagram illustrating the concept of accuracy thresholds for ecosystem
and biodiversity impact insight.

Solutions must have a robust level of impact detection, capable of predicting or identifying
and correctly assigning the majority of a commercial operation’s impact to the correct
holder. They must then be able to adjust those impacts at a high enough resolution to the
fluctuating localized ecosystem resilience to define real-world ecosystem and biodiversity
impact. Results which do not capture a significant proportion of impacts and/or are unable
to estimate the magnitude of impacts at a suitable level of accuracy are likely to be too
inaccurate to provide meaningful insight. They will not cross the conceptual accuracy
threshold (Figure 12). Conversely, since no solution will be perfect, a conceptual upper
accuracy threshold exists (Figure 12).

Within this space, differing but related applications have divergent accuracy thresholds. For
example, the emerging ‘biodiversity credits’ and offshoot of ‘carbon credits’ will, by virtue of
the robust accreditation needed to capture and retain market trust, almost certainly require
more in-situ data than global scale geospatial ESG screenings (Figure 13). Due to the data
challenges around in-situ data for global scale assessments, we focus here on what might be
achieved, at the lower end of the spectrum, without the use of in-situ data.
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Figure 13 - Diagram illustrating the concept that two measures are required, 1) a measurement of impact and 2)
a measurement of ‘ecosystem and biodiversity condition’ to estimate the probable ‘biodiversity impact’. Different
applications have differing accuracy needs, and consequently some areas will require more in-situ data.
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Due to its relevance in addressing the climate and nature crises, the teams which break the
accuracy threshold for geospatial ESG insight will achieve a major milestone. However, only

so much can be achieved with the limits of the data available, and as we’ll argue, in many
cases the quickest route to improved insight is to simply improve the quality and extent of data
available, particularly asset and supply chain data.

BOX 3 - SUPPLY CHAINS AND THE EXTINCTION ECONOMY

Here it is important to reflect that the assets generating the worst impacts, per unit of production, on
the natural world, are not evenly spread across the economy. They are proportionately more often
within the primary, lower-tier industries, as these operations by default interact more with the natural
world (Figure 14).

The current situation is disconcerting. Doubly so, when we consider that there is a willingness
amongst financial institutions to engage with biodiversity, but many report that they lack robust
means to do so. For example, the Robeco survey found that 73% of investors do not have a
way (a data solution) to assess impacts to biodiversity, but equally 71% would respond if
there were greater data transparency (Figure 15).

These assets are sometimes operated by known listed companies or governments but more often by
junior, unlisted, unknown or illegal operators at the very fringes of the economy. While every asset has

to some extent a nature-related impact, those outliers which have a dramatically higher proportion
contribution form what could be considered conceptually as the core of the global extinction
economy. These legal or illegal parts, primarily through habitat clearance, are continuing to drive
humanity and the natural world towards the 6" mass extinction.

Hence, we need a means to include dynamic supply chain data, to ensure the most
problematic assets, which may not be accountable (e.g. illegal operations, unlisted), are not
present and enabled in any accountable listed companies’ operations (via their supply chains).

There is a lack of awareness on the financial implications of biodiversity loss.

To what extent do you agree or disagree with the following statements about biodiversity from an investment perspective?

There is a general lack of awareness on the financial

implications of biodiversity loss. 9% 16% 5%

Supply Chain

(Assets with varying in
nature-related impact)

Parent Company

Primary Sector
(Raw Materials)

Secondary Sector
(Finished Goods)

Tertiary Sector
(Service Sector)

Quaternary Sector
(Information)

The poorest performers
are the cornerstone of
the extinction economy.
Assets that are supported
via higher tier companies
supply chains, often
aggregating to shape a
parent companies real

Investors do not have a way to assess the impact of 73% 17% 10%
investment decisions on biodiversity

Investors will respond if there is greater transparency 1% 25% 4%
over biodiversity in company supply chains and elsewhere.

We are interested in investments which make a positive 66% 25% 9%
contribution to biodiversity, such as through deforestation. ¢ ° <
As investors, we want to learn more about links between 0 0 o
climate change and biodiversity. 66% 25% 9%

The Covid-19 pandemic has increased awareness of risks
arising from biodiversity and teh need to a resiliaent and 45% 26% 29%
stable ecosystem.

. Agree . Neutral . Disagree

Figure 15 — Graph from Robeco, 2022, showing the results of a survey of asset managers.”

In the next sections we look at possible solutions to the ‘biodiversity data
puzzle’, exploring a geospatial approach to the problem.

Idi 1.
Within each sector of the economy, worldimpac

assets exist on a spectrum of

nature-related impact, some

causing irreputable damage others 1
improving the environment.

Ecosystem and Biodiversity Impact

0

Figure 14 — Diagram illustrating the concept that impact on the nature world is
unequally spread across sectors, respectively higher in lower tier industries. Yet
higher tier companies, via their supply chains, fuel and profit from these operations.
Consequently, understanding each asset’s impact within supply chains back to
source is necessary to understand a parent company’s nature-related impact.
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Maxar GeoEye-1 satellite image showing Akaroa NZ, on April 10, 2013
Satellite image © 2022 Maxar Technologies.
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EXPLORING THE GEOSPATIAL SOLUTION

Any insights — metrics produced to define the ecosystem and biodiversity impact of a
commercial asset — must tell us what is happening at a suitable level of reliability. As
established, a highly granular understanding of impact often requires long-term in-situ ground
studies — which are not a practical or viable solution for Fls, which need insight at global scale,
consistently, week on week. Instead, we urgently need robust ex-situ solutions which can be
scaled globally and produced regularly and which are flexible enough in design to allow future
iteration and improvement to enable more granular insight.

Fortunately, over the last decade progress has been made in growing fields of research,
exploring the use of emerging technologies (e.g. Al, Satellite Remote Sensing (SRS) and
ecological modelling) to develop solutions to tackle some of humanity’s most pressing
problems.”® Against this backdrop of progress, here we consider the value of these
developments, via a geospatial data approach, for improved ecosystem and biodiversity
impact insight.

WHAT IS THE GEQSPATIAL APPROACH?

The basic approach is simple enough: the precise location of a commercial asset is defined
and then assessed or modelled with ‘observational datasets’, primarily other geospatial
datasets, to provide ESG-relevant insight. This approach, termed geospatial ESG, can be
used to generate insight into social, governance or environmental topics, such as the impact
of droughts on employment. Here we focus on ‘E’, and specifically ecosystem and biodiversity
impact insights. Two terms are key;

+ Asset data - Datasets, often grouped by sector, defining the location and ideally the
property boundaries (as a point, linear or polygon feature) of commercial assets (e.g. a
factory, farm, mine, road, etc.), their ownership, and frequently key attributes of the asset
class (e.g. type of power plant, production, date of construction, etc.).

+ Observational data — Any data applied, often geospatially defined, to generate insight into
assets. For ecosystem impact, variables such as methane emissions, habitat clearance,

biomass loss, deforestation, habitat fragmentation, endangered species proximity, habitat
connectivity, etc.

The basic concept of the geospatial approach is illustrated below (Figure 16):

INSIGHTS

Asset/s Observation/s

Figure 16 — Diagram illustrating the basics of a geospatial ESG approach. Asset data, defining the
location of a company’s properties (assets), is compared against one or multiple observational datasets
to provide insight. More complex models can be built, but the first step is the accurate location and
ownership of assets, enabling any assessment.
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AGGREGATING RESULTS

A company is the sum of its parts. Each asset, each operation of a company, has a differing
ecosystem and biodiversity impact; an increasingly established way to understand impact is to
assess each part of the company in turn.

A geospatial approach allows us to do this, to look at each asset in turn, including all supply
chain assets.”” These results can then be aggregated,® linking values by ownership, to parent
company, then to portfolio as required. The same asset and observational data can be applied
to provide regional or national results, to help provide consistent cumulative impact insight,
and for other financial applications, such as sovereign debt insight (Figure 17).

TIER 0 - COUNTRY LEVEL
Summed or aggregated scores for
countries, based on Tier 3 and 4 data.

TIER 1 - PORTFOLIO LEVEL
Summed or aggregated scores for countries,
based on Tier 2 company scores.

TIER 2 - PARENT/COMPANY LEVEL
Summed or aggregated scores for parents
companies, based on Tier 3 and 4 results.

TIER 3 - ASSET LEVEL
Assessment of the asset - GIS overlaps,
remote sensing, plus Tier 4.

TIER 4 - SUB-ASSET LEVEL DATA
Assessment within the asset - IOT, smart
meters, traditional ESG reporting etc.

Figure 17 — Diagram adapted from WWF, World Bank and Global Canopy, 20227° — a hierarchy linking
sub-asset assessments to corporate performance to the portfolio to national scales. lllustrating a simple
method to provide methodically consistent results, at differing scales, relevant for different financial
applications and audiences.

This ability to aggregate results consistently is important as FIs need insight at differing
scales. For project finance, single asset screening is important, while corporates’ and
portfolios’ results are need for investment and national scale insights for sovereign debt. Data
consistency, where the same observational data can be applied and summed at different
scales, is helpful as it means that different metrics can align. Of course, where suitable and
useful localized, or ecosystem-specific, industry-specific observational datasets can be
applied. And differing weightings can be applied throughout to prioritize different impacts (e.g.
deforestation within supply chains).

Next, we’ll look in detail at the two major components that make up the geospatial ESG
approach: asset and observational data.



WWF / MAXAR / THE BIODIVERSITY DATA PUZZLE

ASSET DATA

Asset data is currently only available for half a dozen sectors (e.g. mining, oil and gas, power
plants, cement, steel facilities). It often only exists commercially where there has been a
historic application for such data.

To fill data gaps, or place data into the open sphere, we’ve seen a range of open data initiatives
work towards generating asset datasets. Global Energy Observatory, WRI, Google and others
developed a Global Power Plant Database; more recently, Descartes Labs, Oxford University
developed one on solar facilities. Some datasets are generated manually; others have been
developed using remote sensing, identifying assets from their specific profile (e.g. solar panels’
reflective values). The table below (Figure 18) illustrates both open and commercial examples:

Est. No. of
Open/ Est. No. of Assets with )
Asset Dataset Developer/s ) No. of Attributes Date of last Update
Propriety Asset Operator /
Ownership
Global Energy Observatory/
Global Power Plant Google/KTH Royal Institute Open
Database®® of Technology in Stockholm/ (CC BY 4.0) SRR 208CE &9 e
Enipedia/WRI
Solar Farms 9,331 8,492 27 May 2022
Oil and Gas Extraction®' Open 5,182 4847 22 January 2022
Global Energy Monitor (CC BY-NC-SA
Coal Mines 4.0) 3,012 3,007 52 March 2022
Coal Power Plants 13,412 13,412 37 January 2022
Published Oct 27, 2021
Global Inventory of . . L
Utility-Scale Solar University of Oxford/ Open 68.661% 0 50 - providing coverage
Energy Installations® Descartes Lab/WRI (CCBY 4.0) ’ from June 2016 to
9y October 2018.
Palm Oil Concessions WRI O 2,233 2,106 21 December 2021
(CC BY 4.0) ’ :
Cement Facilities Unknown 3,117 Unknown 18 Unknown
University of Oxford

Steel and Iron Unknown 1,598 Unknown 19 Unknown
Power Plants Propriety 120,000+ 120,000+ 40+ Current
Solar Installations S&P Global Propriety 20,000+ 20,000+ 40+ Current
Mining Projects Propriety 35,000+ 35,000+ 30+ Current
Oil and Gas Wells® Enverus Propriety 550,000+ 550,000+ 80+ Current
Oil and Gas Field Propriety 30,000+ 30,000+ Unknown Current
Mining Projects Global Data Propriety 30,000+ 30,000+ Unknown Current
Power Plants Propriety 160,000+ 160,000+ Unknown Current
e L Cirium Propriety 110,000+ Unknown Unknown Unknown
(Commercial aircraft)
Cement Facilities Global Cement Directory Propriety 2,800+ 2,800+ Unknown Annual

Figure 18 — A table providing examples of current open and commercial asset datasets. Values reported
are estimates and may contain errors. Datasets sourced may not be the most recent available.

For the geospatial approach to function, its needs asset data. On Page 99, we explore
and discuss practical means to generate this data at scale (millions of assets) for 95%
of listed and unlisted companies’ assets.
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ASSET PROPERTY BOUNDARIES

To provide robust geospatial ESG insight, it is preferable that asset datasets do not define
location by a single point location but by polygons, accurately geolocating the property
boundaries of each asset within the asset dataset. As the area assessed directly determines the
results generated, an incorrect area is likely to bias outputs. Correct delineation allows both an
estimate of the holder’s responsibility (e.g. extent of environmental assets under ownership) and
their accountability (e.g. extent of environmental assets cleared or impacted under ownership).
These data are particularly needed for sectors with large land holdings, whose property
boundaries are frequently unclear (e.g. mining and agriculture); they are arguably less essential
for some sectors, such as real estate, where highly accurate estimates of property boundaries
can more easily be discerned from satellite imagery.

It is of course possible, lacking property boundaries, to use point location data and apply a
buffer (e.g. a 1km circle around the asset) or create estimated areas of operation, where for
example, Maus et al., 2020 successfully estimated the area of operation of 6,021 mines globally
from satellite imagery (Figure 19).

Figure 19 — From Maus et al.,
2020% - An example of how
satellite imagery has been
applied to estimate the extent
of mining operations. While
useful, it highlights the need
within geospatial ESG for the
true property boundaries to
be established for accurate,
consistent assessments of
ecosystem and biodiversity

owned and managed land.
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OTHER ASSET DATASET CONSIDERATIONS
‘SUPPLY CHAIN’ ASSETS

It should be briefly noted that there is no distinction between a ‘supply chain’ asset and a directly owned
asset within asset datasets. The rationale for this is simple: everything, depending on the perspective,

is an asset. What might be a ‘supply asset’ in one company’s supply chain is simply an asset for its

own company. If we geolocate every asset on Earth,® we can assess every asset uniquely and provide
insight. That insight can later be aggregated and adjusted - linking assets’ results together within a
specific supply chain to give supply chain ‘scores’ or insight. And of course, we can keep track of the
fact that these assets are, within this use case, ‘supply assets’ and not directly held assets within that
company/portfolio.

SUB-ASSET

Within certain asset classes there are physical components which can be of special interest for
geospatial ESG insight. An example of this is tailing dams: dams used by the mining sector to retain
water and the chemical by-products of mining, refining or smelting. These large bodies of water and
hazardous waste are normally located within the mining property. The Dam Monitoring from SATellites
(DAMSAT) initiative®” uses satellite data (ex-situ metrics) to monitor these assets, the failure of which can
present serious environmental, social and economic consequences. Such sub-asset insights can of
course be linked into the geospatial ESG insights.

COMPANY TREES (ENTITY MATCHING)

It is important that subsidiary companies are correctly assigned to the correct parent company for
insight aggregation (See Page 43). For technical ease and to lower the potential for error, this linkage
should be included within the asset datasets themselves, where the attributes should include the
subsidiary name and unique identifiers of the direct owner, any partial ownership, royalty holders, etc.,
and the parent company name, and its identifiers (e.g. tickers, LEI, GLN). Such identifiers are important,
and asset data development efforts should align to ongoing efforts to support entity matching. Finally,
complications in ownership, such as shared ownership, where multiple parties may own a percentage
of an asset, pose little technical difficulty, but standards must be established to ensure results are
consistently aggregated and reported. At the simplest level, the assets’ variables can be assigned to all
holders, with no differentiation as to % of ownership (e.g. dividing impact by % of ownership).

OBSERVATIONAL DATA AND METRICS

Observational data are the data applied onto asset data to provide insight. The analysis, measurement,
conversion, weighting and normalization of the observational data, alone or with other datasets, produces
metrics. For example, the observational dataset of a geospatial layer defining global forest loss, applied
against a palm oil sector asset dataset, creates the metric, ‘12-month deforestation risk (per km?)’ for palm
oil plantations. Non-geospatial data can be combined within the approach, as can multiple datasets, data
triangulation, machine learning, etc., to produce more refined and complex metrics (See Page 55).

It is difficult to discuss observational data without discussing metrics, as understandably interest

is immediately placed on gaining insight from observational data. However, it is vital to make the
distinction, as often observational datasets are frequently used as proxy measurements inferring
relationships. And one observational dataset can be applied in slightly differing ways to produce dozens
of metrics. For example, the observational datasets ‘protected areas’ and ‘national boundaries’ are
often applied as the metric ‘national protected area extent %', inferring better national biodiversity and
ecosystem performance from larger percentages. But they are also applied to produce metrics defining
the extent of land under differing protected area management categories — protected within each
municipality, state or water basin, etc.

Currently across the metric space, confusion reigns — a vast array of nature-related metrics now exist,
attempting to provide insights across ‘biodiversity’-related topics, such as dependencies, impacts, risk
and opportunities. Indeed, TNFD reported that there are over 3,000 different nature-related metrics in
use today,?® noting that the lack of standardization of nature-related metrics is a limiting factor on Fls’
understanding and reporting. Even within emerging standards, it isn’t yet clear on what the metrics
should be applied. The draft ESRS® under its application guidance states, ‘Performance measures

on Biodiversity and ecosystems are currently the object of many ongoing collective work at the time of
the drafting of this Standard. That is why the disclosure requirements proposed in this [Draft] Standard
are mostly principles-based, so as to clarify the categories of performance measures expected, as well
as laying out the features of quality biodiversity and ecosystems-related measures rather than proposing
specific measures per se.’

For those corporates and Fls working to meet these emerging standards. this could be frustrating —
and likely to create dissatisfaction and inconsistency in the results reported. And yet this position is
fully understandable, as there is no current perfect solution, or even widely used or accredited
approach. Here we look at geospatial ex-situ metrics for supporting nature-related insight.

GEOSPATIAL METRICS

Many of the 3,000 metrics in use today for nature-related insight are geospatially based, often either direct
products of Satellite Remote Sensing (SRS), derived products or aggerated products (e.g. indices) formed
from one or multiple geospatial datasets and in some cases non-spatial data.

It is useful to make a distinction between the different types of data used. Broadly speaking they can be
divided into two groups. Vector datasets are often man-made delineations: country boundaries, protected
areas, indigenous areas, key biodiversity areas, marine protected areas, important marine mammal areas,
estimated species ranges, etc. Raster files, grids of pixels often used to represent continuous phenomena
or variables, are equal-area squares with a given specific value, frequently generated from SRS data

(e.g. satellite imagery) and used to provide global maps of land cover, elevation, forest loss, forest gain,
flood risk, ground carbon, extreme weather risk, human disturbance, biodiversity indices, species counts,
habitat connectivity, etc.

Here, with input from Maxar we explore the current data landscape and potential future developments.

CURRENT SITUATION - COMMON ISSUES WITH GEOSPATIAL OBSERVATIONAL DATA

There is much to say on the various common data issues with geospatial observational datasets.®° For
brevity, the common issues faced are:

Temporal Consistency Often datasets do not update frequently enough to support timely
ESG insight or to monitor trends, often updating once per annum or
not at all.

Spatial Resolution Datasets (particularly those in the open data space) can have a low

spatial resolution. This for some applications can lack the required detail
to detect variables.

Accuracy Often raster observational datasets are generated from complex image
classification algorithms of satellite imagery, in which methodological
choices have had to be made to define how to interpret images.
Ground validation, required to improve the accuracy of data products,
is often costly and as a result limited. In addition to the methodological
challenges, some classifications provided might not be narrow enough
for the sought application — e.g. ‘forest’, and not ‘pine forest’.

Data Interdependencies  Due to the challenges involved in creating global observational datasets
and the narrow pool of robust global layers, some observational datasets
may draw from the same source data.

Relevancy Due to the technical difficulty in measuring certain variables, some
topics, including ecosystem condition, are not well documented within
the observational data portfolio.
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IMPLICATIONS

As a result of the current observational data landscape, where often there is a lack of consistent data

over time and a lack of measurements in key areas — we frequently see the application of low temporal
resolution data or the next best available proxies. The extent to which these proxy metrics can holistically
account for specific impacts at the site level is often unclear. Consequently, unpicking how well or even
what exactly these metrics capture and define, in terms of real-world biodiversity and ecosystem impact, is
often challenging. For example, an asset’s proximity to areas of low human footprint, to protected areas or
to endangered species has an unclear relationship to actual impact. Observational data can also be applied
incorrectly. An increasingly common problem in emerging geospatial data products, is ‘temporal false
negatives’ - this occurs when the observational dataset applied predates the asset under observation. For
example, a palm oil plantation was developed, clearing primary rainforest in 2007, but the observational
ground carbon data applied is from 2020 onwards and consequently reports 0 km? for the asset, as it is
measuring the already cleared site.

WHAT OBSERVATIONAL DATA SHOULD BE USED?

Geospatial observational datasets are highly diverse; however, there are common traits which on average
make them more useful within geospatial ESG applications, namely:

+ High frequency - datasets which update with a high frequency (e.g. daily, weekly) are often more able to
capture impact and define trends over time.

+ High and Moderate spatial resolution — metrics needs to be based on a combination of data at
resolution/s sensitive enough to able to detect change within the measured variable; often nature-related
variables require higher resolution imagery (<15m) to detect subtle impacts (e.g. clearance of small
blocks of habitat)

« Accuracy - observational datasets need two forms of accuracy: values need to achieve a level of
accuracy (e.g. are correct), but also values need to determine variables at the required level of distinction
(e.g. ‘pine forest’ and not just ‘forest’).

+ Relevancy — metrics must capture a specific variable (i.e. extent of forest loss). Those which are more
closely aligned to the desired measurement variable (i.e. habitat loss) are more likely to be of greater utility.

+ Consistency — data must be consistently produced if it is to be comparable with prior data points and
users can trust that it will be continually available.

+ Wide Application - Ideally (but it is not always feasible), outputs should be applicable to a wide range of
ecosystems (although there is the potential for ecosystem/sector-specific metrics).

Observational data, with progress in satellite technology, machine learning etc., will change over time, as will
geospatial ESG methods and models. The perspective at which different users will wish to view ecosystem
and biodiversity impact will also vary from actor to actor, as will FIs’ requirements and exposures. As a result,
no observational dataset or derived metric can be considered the ‘right’ or permanent solution. However,
while at this time there is no widely agreed set of metrics for ex-situ ‘ecosystem and biodiversity’ insight, as
the field evolves, we expect iteration, testing, review and benchmarking to occur and that actors are likely to
gravitate organically to the most proven observational data and metrics for specific use cases.

To give an illustration of what is available currently likely to be available within the immediate future,
we outline the types of observational datasets and metrics that could be generated to provide insight:

OBSERVATIONAL DATA / METRICS

To give a sense of the status of SRS science and its relevance to geospatial ESG, here, structured into the
approach applied within this document, we provide a few current examples capable, or potentially capable, of
providing insights for 1) environmental context, 2) ecosystem condition, 3) direct impact and 4) indirect impact.

It is important to note that the data produced by these approaches can be used alone or applied to update
or refine existing vector datasets, such as datasets defining biomes, ecoregions, water basins, etc. Or it
can be used in combination with other vector datasets (e.g. protected areas, IP lands) to produce additional
metrics (e.g. forest loss within protected areas).

Environmental Context

Observational Data

Satellite imagery
based land cover
classification

Satellite imagery
based land cover
classification

Satellite imagery
based water
classification
algorithms; Elevation
datasets

DSM, DTM, DEM,
Point Cloud

Satellite imagery
based land cover
classification

Satellite imagery
based land cover
classification

Satellite imagery
based land cover
classification

Satellite imagery
based land cover
classification

Satellite imagery
based land cover
classification

Satellite imagery
based land cover
classification

Satellite imagery
based land cover
classification

Metric

Biome

Ecoregion

Water basin

Elevation

Land cover

Forest cover

Sub-metrics
considering key
forest types

of Primary /
Secondary
Forest /
Forestry
Plantation /
Palm Oil

Extent of
Intact Forest
Landscapes
and other
conservation
areas

Mangrove forest
extent

Grassland
extent

Species
insights (i.e.
total % of
species range,
abundance,
richness, etc.)

What it Measures

Large unit of land
or water (also
vegetation) adapted
to a specific climate

Large unit of land
or water containing
a geographically
distinct collection
of species, natural
vegetation, and
environmental
conditions

Surface water extent,
drainage basin extent

Slope, aspect,
height of bare earth,
vegetation, and man-
made features

Classification of the
physical material on
the surface of the
Earth

Classification of the
health and extent of
the forest land class

Classification of the
health and extent of
the forest land class
and its sub-classes.

Classification of the
health and extent of
the forest land class

Classification of the
health and extent of
the mangrove forest
land class

Classification of the
physical material on
the surface of the
Earth

Vegetation species
identification

and biodiversity/
spectral diversity
relationships

Frequency

Yearly

Monthly

As often as new
imagery becomes
available

Bare earth elevation
models change
infrequently- less
than yearly. Changes
in man-made features
can be detected more
frequently.

Post event; monthly-
yearly.

Post event; monthly-
yearly.

Post event; monthly-
yearly.

Post event; monthly-
yearly.

Post event; monthly-
yearly.

Post event; monthly-
yearly.

Post event; monthly-
yearly.

Current Examples

Fonseca, L.M.G., Kérting, T.S., Bendini, H. do N.,
Girolamo-Neto, C.D., Neves, A.K., Soares, A.R.,
Taquary, E.C. and Maretto, R.V. (2021). Pattern
Recognition and Remote Sensing techniques applied
to Land Use and Land Cover mapping in the Brazilian
Savannah. Pattern Recognition Letters, 148, pp.54—60.

Pétzschner, F., Baumann, M., Gasparri, N.I., Conti,

G., Loto, D., Piquer-Rodriguez, M. and Kuemmerle, T.
(2022). Ecoregion-wide, multi-sensor biomass mapping
highlights a major underestimation of dry forests
carbon stocks. Remote Sensing of Environment, 269,
p.112849. doi:10.1016/j.rse.2021.112849.

Duan, W., Maskey, S., Chaffe, P.L.B., Luo, P., He, B.,
Wau, Y. and Hou, J. (2021). Recent Advancement in
Remote Sensing Technology for Hydrology Analysis
and Water Resources Management. Remote Sensing,
13(6), p.1097. doi:10.3390/rs13061097.

Rukhovich, D.l., Koroleva, P.V., Rukhovich, D.D. and
Rukhovich, A.D. (2022). Recognition of the Bare Soil
Using Deep Machine Learning Methods to Create Maps
of Arable Soil Degradation Based on the Analysis of
Multi-Temporal Remote Sensing Data. Remote Sensing,
14(9), p.2224. doi:10.3390/rs14092224.

Sarif, M.O. and Gupta, R.D. (2021). Spatiotemporal
mapping of Land Use/Land Cover dynamics using
Remote Sensing and GIS approach: A case study
of Prayagraj City, India (1988-2018). Environment,
Development and Sustainability. 24, 888-920.
doi:10.1007/s10668-021-01475-0.

Sarif, M.O. and Gupta, R.D. (2021). Spatiotemporal
mapping of Land Use/Land Cover dynamics using
Remote Sensing and GIS approach: A case study
of Prayagraj City, India (1988-2018). Environment,
Development and Sustainability. 24, 888-920.
doi:10.1007/s10668-021-01475-0.

Sarif, M.O. and Gupta, R.D. (2021). Spatiotemporal
mapping of Land Use/Land Cover dynamics using
Remote Sensing and GIS approach: A case study
of Prayagraj City, India (1988-2018). Environment,
Development and Sustainability. 24, 888-920.
doi:10.1007/s10668-021-01475-0.

Filewod, B. and Kant, S. (2021). Identifying
economically relevant forest types from global satellite
data. Forest Policy and Economics, 127, p.102452.

Lee, C.K.F., Duncan, C., Nicholson, E., Fatoyinbo, T.E.,
Lagomasino, D., Thomas, N., Worthington, T.A. and
Murray, N.J. (2021). Mapping the Extent of Mangrove
Ecosystem Degradation by Integrating an Ecological
Conceptual Model with Satellite Data. Remote Sensing,
[online] 13(11), p.2047. doi:10.3390/rs13112047.

Khazieva, E., Verburg, P.H. and Pazur, R. (2022).
Grassland degradation by shrub encroachment:
Mapping patterns and drivers of encroachment
in Kyrgyzstan. Journal of Arid Environments, 207,
p.104849.

Rossi, C., Kneubuhler, M., Schiitz, M., Schaepman,
M.E., Haller, R.M. and Risch, A.C. (2021). Spatial
resolution, spectral metrics and biomass are key
aspects in estimating plant species richness from
spectral diversity in species-rich grasslands. Remote
Sensing in Ecology and Conservation. 8(3), 297-314.
doi:10.1002/rse2.244.



Ecosystem Condition

Observational Data

Satellite imagery
based remote sensing
algorithm

Satellite imagery
based remote sensing
algorithm

Multiview
photogrammetry

Satellite imagery
based land cover
classification

Satellite imagery
based remote sensing
algorithm

Satellite imagery
based remote sensing
algorithm

Satellite imagery time-
series based deep
learning models

Satellite imagery time-
series based deep
learning models

Satellite imagery time-
series based remote
sensing classifications
and algorithms

Satellite imagery
based remote sensing
algorithms

Satellite imagery
based remote sensing
algorithms

Metric

Leaf area index

Foliar nitrogen
content

Vegetation
height

Habitat
structure

Fraction of
vegetation
cover

Chlorophyll
content

Land surface
green-up

Land surface
senescence

Above-ground
biomass
(carbon cycle)

Leaf dry matter
content

Ecosystem soil
moisture

What it Measures

Ratio of leaf area

to per unit ground
surface used as a
stress indicator for
vegetation canopies

Relative nitrogen
content in vegetation

Vegetation height can
be calculated using
satellite imagery from
multiple look angles

Classification of the
type and distribution
of vegetation

A ratio (usually
percentage) of total
vegetated area to the
total study area

A key indicator of
leaf greenness and
nutrient deficiencies

Onset of seasonal
vegetation growth

Conclusion of
seasonal vegetation
growth

Mass of living
vegetation above the
soil surface

Remote sensing
index (ratio) of

leaf dry matter to
saturated fresh mass;
used to indicate
vegetation growing
conditions

Measure of soil
moisture content; an
indicator of the health
or stress of land
surface ecosystems

Frequency

Post event;
weekly,
monthly,
yearly

Post event;
weekly,
monthly,
yearly

Pre-event,
post event,
yearly

Post event;
weekly,
monthly,
yearly

Post event;
weekly,
monthly,
yearly

Post event;
weekly,
monthly,
yearly

Seasonally

Seasonally

Post event;
weekly,
monthly,
yearly

Post event;
weekly,
monthly,
yearly

Post event;
weekly,
monthly,
yearly

Current Examples

Hirigoyen, A., Acosta, C., Ariza, A., Vero-Martinez, M.A.,
Rachid, C., Franco, J. and Navara-Cerrillo, R. (2022). A
machine learning approach to model leaf area index in
Eucalyptus plantations using high-resolution satellite
imagery and airborne laser scanner data. Annals of Forest
Research, 64(2), pp.165-183. doi:10.15287/afr.2021.2073.

Wu, H., Levin, N., Seabrook, L., Moore, B. and McAlpine,
C. (2019). Mapping Foliar Nutrition Using WorldView-3 and
WorldView-2 to Assess Koala Habitat Suitability. Remote
Sensing, 11(3), p.215. doi:10.3390/rs11030215.

Gazzea, M., Aalhus, S., Kristensen, L. M., Ozguven, E.
E. and Arghandeh, R. (2021). Automated 3D vegetation
detection along power lines using monocular satellite
imagery and deep learning. 20217 IEEE International
Geoscience and Remote Sensing Symposium IGARSS,
3721-3724.

Merrington, A.T., Milodowski, D.T. and Williams, M. (2021).
Optimising remotely sensed land cover classification for
habitat mapping in complex Scottish upland landscapes.
Space, Satellites, and Sustainability I, 11888, p.118880G.
doi:10.1117/12.2600869.

Ma, X., Lu, L., Ding, J., Zhang, F. and He, B. (2021).
Estimating Fractional Vegetation Cover of Row Crops from
High Spatial Resolution Image. Remote Sensing, 13(19),
p.3874. doi:10.3390/rs13193874.

Zhang, H., Li, J., Liu, Q., Lin, S., Huete, A., Liu, L., Croft, H.,
Clevers, J.G.PW.,, Zeng, Y., Wang, X., Gu, C., Zhang, Z.,
Zhao, J., Dong, Y., Mumtaz, F. and Yu, W. (2022). A novel
red-edge spectral index for retrieving the leaf chlorophyll
content. Methods in Ecology and Evolution. 00, 1-17.
doi:10.1111/2041-210x.13994.

Lake, T.A., Briscoe Runquist, R.D. and Moeller, D.A. (2022).
Deep learning detects invasive plant species across
complex landscapes using Worldview-2 and Planetscope
satellite imagery. Remote Sensing in Ecology and
Conservation. doi:10.1002/rse2.288.

Lake, T.A., Briscoe Runquist, R.D. and Moeller, D.A. (2022).
Deep learning detects invasive plant species across
complex landscapes using Worldview-2 and Planetscope
satellite imagery. Remote Sensing in Ecology and
Conservation. doi:10.1002/rse2.288.

Zhu, Y., Liu, K., Liu, L., Myint, S.W., Wang, S., Cao, J. and
Wu, Z. (2020). Estimating and Mapping Mangrove Biomass
Dynamic Change Using WorldView-2 Images and Digital
Surface Models. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 13, pp.2123-2134.
doi:10.1109/jstars.2020.2989500.

Zhang, Z., Tang, B.-H. and Li, Z.-L. (2018). Retrieval of

leaf water content from remotely sensed data using a
vegetation index model constructed with shortwave infrared
reflectances. International Journal of Remote Sensing, 40(5-
6), pp.2313-2323. doi:10.1080/01431161.2018.1471553.

Son Le, M. and Liou, Y.-A. (2021). Temperature-soil
moisture dryness index for remote sensing of surface
soil moisture assessment. IEEE Geoscience and Remote
Sensing Letters, 19, 1-5

Direct Impact

Observational Data Metric

Satellite imagery Land cover change / Habitat
based land cover loss
classification

Satellite imagery Forest loss
based remote

sensing algorithms

Satellite imagery Forest gain

based remote
sensing algorithm

Satellite imagery
based land cover
classification

Sub-metrics considering
key forest types of Primary /
Secondary Forest / Forestry
Plantation / Palm Oil

Satellite imagery
based remote
sensing algorithms

Soil exposure

Satellite imagery Fire intensity and burn
based remote extent
sensing algorithms

Satellite imagery
based remote
sensing algorithms

Landslide impact

What it Measures

Classification of the
health and extent of
the designated land
cover class and its sub-
classes.

Forest species
identification and
biodiversity/spectral
diversity relationships

Forest species
identification and
biodiversity/spectral
diversity relationships

Classification of the
health and extent of
the designated land
cover class and its sub-
classes in secondary
forests

Soil quality assessment
and identification

/ spectral diversity
relationships

Fire extent assessment
and identification

/ spectral diversity
relationships

Landslide conditioning
factor assessment and
identification

Frequency

Post event;
monthly-yearly.

Post event;
monthly-yearly.

Post event;
monthly-yearly.

Post event;
monthly-yearly.

Post event;
monthly-yearly.

Post event;
monthly-yearly.

Post event;
monthly-yearly.

Current Examples

Smith, K.E.L., Terrano, J.F., Pitchford, J.L.
and Archer, M.J. (2021). Coastal Wetland
Shoreline Change Monitoring: A Comparison
of Shorelines from High-Resolution
WorldView Satellite Imagery, Aerial Imagery,
and Field Surveys. Remote Sensing, 13(15),
p.3030. doi:10.3390/rs13153030.

Jackson, C.M. and Adam, E. (2021). Machine
Learning Classification of Endangered Tree
Species in a Tropical Submontane Forest
Using WorldView-2 Multispectral Satellite
Imagery and Imbalanced Dataset. Remote
Sensing, 13(24), p.4970. doi:10.3390/
rs13244970.

Kamal, M., Sidik, F., Prananda, A.R.A.
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It is important to reflect that while Satellite Remote Sensing (SRS) methods offer increasing insight,
and are continuously improving, no ex-situ method can measure everything. Consequently, the huge
diversity of impacts facing the natural world will never be able to be captured entirely by ex-situ
approaches. Understanding, for example, resource extraction (i.e. wild fish caught, bush hunting,
etc.), soil pollutants, water use, solid waste or specific species ranges will in almost all cases require
in-situ (ground collected) data. As in-situ data aggregation improves over the coming years at the
global scale, particularly on biodiversity, it will be possible to integrate this data into the approaches

outlined in this document to improve insight.

REFLECTIONS ON METRICS

Topic Difficulty — Not all metrics are equal. From a SRS perspective, some observational datasets
are simpler and easier to achieve than others. What we see within the nature-related space is a ramp
of difficultly, where the easier metrics have long been achieved, and the more technically difficult,
such as defining ‘landscape condition’, remain out of reach. Clarity needs to be provided not only on
the confidence of a metric but on which area data gaps are present within the results.

Biome Specific Metrics — As outlined at the start of this paper, each ecosystem is unique.
Consequently, to improve insight it seems likely we will see the rise of ecoregion specific metrics,
where it may be possible to improve insight by spatially limiting SRS methods to a given region,
allowing the tailoring of approaches to the specific characteristics of nature present. Already

a number of robust biome and ecoregion maps exist, which could be used to provide spatial
delineations for application of these niche methods (Page 71).

Sector Specific — Already we are seeing the rise of sector specific metrics (e.g. mining tailing dam
monitoring). As time goes on it is inevitable, with improvements in SRS, more and more satellites
deployed, increases in Al capabilities, etc., that we will witness the increase in niche sector specific
data solutions relevant for geospatial ESG applications.

Metrics Aggregation — While the development of metrics tailored to specific biomes and sectors is
to be welcomed for improved insight, it comes at a potential cost. When actors attempt to aggregate
data at the parent company or portfolio level, the greater and more varied the specificity of metrics
applied, the harder direct aggregation will be. It seems probable that there will be other intelligent
means to aggregate data — yet it is a potential shortfall in the development of greater and greater
ecosystem and sector metric specificity. On Page 82 we explore the topic of quantification and
aggregation in more detail.

THE ROLE OF GEOSPATIALESG AS A COMPONENT OF ESG

DATA TRIANGULATION

It should be stressed that no single data solution can hope

to provide all the necessary components of nature-related
ESG insight. Consequently, geospatial ESG insight is not a
standalone ESG data solution but one of many to be integrated
with others to provide improved insight.

It is interesting to reflect differing data solutions have a
different proportionate relevancy in capturing impact across
industry tiers. For example, it is likely that the importance of
geospatial in screening a company’s direct assets decreases
towards higher tiers, and the importance of screening a
company’s supply chain assets increases towards higher tiers.

This is because high tier sectors are far more likely to have
their directly held assets within long-established urban areas
with a lower potential for destruction of natural habitats.
Primary industries have comparatively smaller supply chains,
and their role is likely to be proportionately lower in overall
company impact, most of which will be contained in their
own direct holdings and actions. Conversely, the nature-
related impact of a company’s workforce is likely to be
proportionately more significant in higher tiers, where often
the higher tiers have larger numbers of employees relative
their spatial footprint than lower tier sectors (Figure 20).

Geospatial Supplier’s
Asset Screening

Footprint (workforce)
Modelling

Relative importance of Data Method

— Traditional ESG

— Geospatial Asset
Screening

Primary Sector Secondary Sector  Tertiary Sector Quaternary Sector

(Raw Materials) (Finished Goods) (Service Sector)

(Information)

Figure 20 - lllustration of the concept that different ESG data solutions have a higher relevancy for
capturing the proportional nature-related impact of differing sections of the economy.

The extent to which Figure 20 is correct is not vital. What
is important is the concept that different data approaches
provide insights that other approaches cannot. As
geospatial insights become normalized, opportunities

will arise to combine its insights with other ESG data
approaches for improved holistic ESG insight. For example,
one commercial provider currently uses SRS data to
estimate the methane emissions of oil and gas operations
within the continental United States, comparing those
numbers to the companies’ officially reported emissions.
Both data points, and the variance between them, provide
additional ESG insight.

As an example of the value of combining differing data
approaches, WWF’s Conservation Intelligence team are
currently working with Carnegie Mellon University to build

a library of media articles published online about impacts

to conservation sites (e.g. fires, logging, poaching, heavy
metal pollution, floods, etc.), geolocating articles to specific
sites (See Box 4).This Natural Language Processing (NLP)
driven approach is able to identify ‘entities’, such as company
names, and assets and therefore has the potential to be linked
to geospatial ESG insights. This provides insight on aspects
impossible to detect via ex-situ SRS approaches alone,
supporting additional verification, and aims to provide site
level scorings for threat presence, which in turn can be used
to help qualify landscape condition.



BOX 4 - DATA TRIANGULATION

Authors: Fei Fang, Leonardo Assistant Professor — Carnegie Mellon University, Ryan
Shi, graduate student — Carnegie Mellon University and Sedrick Scott Keh, graduate
student — Carnegie Mellon University

As we move forward, data triangulation will become an essential component within ESG,
uniting insights from differing data solutions to fill data gaps. Here we provide an example

of natural language processing (NLP) based media scraping, providing insights that could
potentially be linked, via company names, asset, location or a combination, to geospatial ESG
insights.

Carnegie Mellon University (CMU) worked with WWF to develop ‘NewsPanda’, a machine
learning-based system which automatically detects, classifies and analyses news articles
related to conservation and infrastructure. NewsPanda aims to automate processes that
would otherwise be costly to do manually, such as news article collection, relevance
classification and keyword extraction.

NewsPanda consists of five modules. Using names of conservation sites as search terms, the
information retrieval module is able to scrape hundreds of news articles from various global
and local news sites every week. The main relevance classification module then uses state-
of-the-art NLP models to classify news articles along two dimensions, namely conservation
relevance and infrastructure relevance. This machine learning model builds upon previous
work by The Alan Turing Institute and WWEF, taking into consideration certain features such as
sentiment analysis polarities and topic value vectors.

Training the model involved using active learning techniques as well as ways to perform noisy
label correction.®! Afterwards, in the article postprocessing module, NewsPanda extracts
crucial information such as keywords and related named entities, such as specific location
names, people and organizations. This is helpful in identifying common links between
developments across different locations and across different points in time, helping to
provide key insights to local WWF offices and field teams, as well as other parties interested
in monitoring developments in conservation and infrastructure.

& Figure 21 — The GIS
wat dashboard by WWF India,
where each relevant article
; ‘ is shown on the map with
; CMUXWWF ML Geolocations - ‘ ¢ \ G2 its corresponding key
Parivesh Masterlist 02 08 22: Parivesh & . details. The highlighted
L 5 { red areas indicate clusters
of articles found by the
NewsPanda pipeline.

After generating these insights, a visualization module delivers these extracted articles and
relevant locations to be consumed by the WWF staff. One such example is the GIS dashboard
developed by WWEF India (Figure 21). Every week, the WWF India team receives a list of news
articles predicted as relevant, together with the corresponding keywords, named entities and
geospatial coordinates. These relevant areas are then plotted on a dashboard, which will
make it easier for field teams to explore and navigate. Furthermore, selected outputs from
NewsPanda are also available to the public through a social media module on Twitter, called
WildlifeNewslndia. There are plans to extend the deployment, and work is currently being
done to incorporate a broader collection of languages beyond English.

By building a global library of news articles about developments occurring within key
conservation sites, NewsPanda provides a highly useful resource for conservationists
but also potentially for ESG applications, where entity names (e.g. company names)
could potentially be extracted and linked, and triangulated with other ESG data points.

ADVANTAGES OF A GEOSPATIAL APPROACH

The geospatial approach faces challenges, as do all methods attempting to tackle such a
complex topic, but arguably the approach has several advantages:

+ Biodiversity — The ‘biodiversity’ around you, in gardens, hedges, blocks of native habitat,
are hyper-localized. The difference between sites of intact, rare biodiversity and low
biodiversity can be as little as a single metre. Biodiversity occurs in very specific places.
Even within large areas of high biodiversity, such as the Amazon, biodiversity is not equally
spread, but rather topographic features, microclimates, will lead to some small areas
containing niche species not found in the wider region.

- Biodiversity is inherently geospatial; a geospatial data approach best allows the
inclusion of this reality.

+ Data - One of the largest problems with the ‘biodiversity puzzle’ is data. We lack, globally
and even regionally, both direct measures on species and ecosystem function — in-situ
data, vital for establishing baselines and trend measures — and indirect proxy data which
could be potentially used to support insights. Universally within this space, data cadence
is a repeating issue, where often it difficult to gain access to updates at high frequency (i.e.
monthly or better).

Consequently, lacking robust timely direct data, remote sensing data, primarily from
satellites, has become an increasingly vital data source. Independent, robust, quantifiable,
consistent and available at increasingly highly temporal and spatial resolution, it is a

key resource in providing ex-situ insight at a global scale, week on week. It can also be
interlinked with ecology / conservation in-situ data, which is increasingly geolocated.

A geospatial approach readily allows the ingestion of this rich, growing and
improving data source, while still allowing triangulation with other datasets.

« Scale - The financial sector is interested in operations which span every corner of the
globe. Any data solution must therefore also have global reach. Geospatial data is already
generated at the global scale, allowing comparability between variables.

+ Climate Change - Although not directly tackled in this document, climate variables are
heavily interlinked with nature-related impact and vice versa; hence, understanding that
connection will be increasingly important. Since much if the world of climate change data is
geospatially defined, a geospatial approach can align to climate data.

+ High Cadence - Impacts to biodiversity can occur and dissipate at a high frequency
(e.g. a marine oil spill from a pipeline). Consequently, to capture such impacts before
they disappear, high-frequency data is required. Earth Observation products already
provide very high cadence data - daily imagery of the globe; a geospatial approach is well
positioned to ingest and benefit from this data.

+ Independence - Geospatial insight is normally entirely independent of the company itself,
offering a potentially useful unbiased data source. In contrast, within self-reported ESG data
(e.g. annual reports), there is an incentive to minimize reporting.

+ Critically, a geospatial approach can be data and model agnostic. This is vital: as data
changes and improves, data and models will need to be updated. In addition, this approach
facilitates interoperability with third-party models to run generic or niche assessments on
specific types of commercial operations within specific ecosystems.
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DISADVANTAGES OF A GEOSPATIAL APPROACH

As is well documented, there are significant challenges to providing
nature-relevant data insights at global scale, and geospatial solutions
are no exception. While it is expected that many of these issues will
be resolved as the field develops, there are significant obstacles that
currently limit the extent, scale and accuracy of geospatial methods.

Asset Data - There is a deficiency of asset data, either openly or
commercially available, required for enabling a geospatial approach
(See Page 44). The asset data which is available tends to be due

to a historic commercial need. Currently only a select few sectors
(e.g. power, mining, oil and gas, shipping) have robust global asset
datasets. The majority of sectors (e.g. agriculture, real estate, etc.)
lack globally aggregated datasets.

Supply Chain Data — Aimost no supply chain data is disclosed; while
there has been sustained effort from commercial business intelligence
providers, developing products such as FACTSET, there is still a lack
of detailed, dynamic insight into 95%+ of companies’ supply chains to
source. Without supply chain data, the geospatial approach (and other
data approaches) lacks the means to capture high tier industries’
nature-related impact.

Observation Data - While there is a huge volume of observational
data available, there is a lack of relevancy, temporal and spatial
resolution, and consistency with these datasets.® On top of this, there
is confusion surrounding which observational datasets, and derived
metrics, to apply for defining biodiversity and ecosystem impact.
However, as the commercial SRS space begins in earnest to provide
data solutions for geospatial ESG application, we can expect this to
change rapidly.

Standards - With the field only just emerging, there are essentially no
standards for data infrastructure, asset datasets, supply chain data,
data security, interoperability, ownership, observational datasets,
geospatial ESG methodologies, etc. However, standards do already
exist across similar use cases, and as the field develops, standards
can potentially be rapidly developed.

Business Model - The data ecosystem of geospatial ESG is far more
diverse than traditional ‘ESG’ business intelligence - it requires SRS,
Cloud Compute, Business Intelligence asset and supply data, NGO
and IGO biodiversity and ecosystem data, etc., requiring multiple
open and commercial actors to collaborate and forge partnerships

to generate novel data products, with an as-yet-unproven business
model. A direct barrier to entry is this multi-stakeholder complexity

in a space that traditionally has been controllable by a single entity.
Consequently, Business Intelligence and ESG data providers may be
reluctant to invest in the space due to the complexity and uncertainty
around collaboration between multiple stakeholders (See Page 92).

Photo: Andean cock of the rock (Rupicola peruviana); Manu National Park,
Peru - species live in defined ranges, some highly specific (See Page 57)
© André Bértschi / WWF




PART4
EXPLORING A.
T0 GEOSPATI

Maxar WorldView-2 satellite image showing colour infrared image of oil
slicks near Playa Bahia Blanca-Ventanilla Peru, on January 19, 2022.
Satellite image © 2022 Maxar Technologies.

KEY POINTS

To provide comparable insight, geospatial ESG requires a
widely agreed high-level framework, and clarity on approaches.
In this section we explore various core concepts for discussion.

Here we propose to divide insight into assets into four
distinct categories — the ‘IBLG’: values Internal (1) to the
property, Bordering (B) the property (less than 1km), in the
surrounding Landscape (L) (1-1,000km), and wider Global (G)
values (=1,000km).

Factually stating the results within different areas relative to
the asset avoids issues around causation, reducing technical
complications — and potential legal ramifications — in trying to
prove or assign impact to specific actors.

We suggest that ‘biodiversity’ and ‘ecosystem’ baselines
must be included, as otherwise impact/s prior to 1980, the
beginnings of the SRS record, are likely to be excluded.

Observational datasets and derived metrics could be framed
in a diverse range of ways; here we suggest defining the
‘environmental assets’, ‘direct’ impacts and ‘indirect’ impacts
within the IBLG areas.

Significantly more complex models and insights can be
developed, but for now, we attempt to select the simplest
methods, to outline the vision and highlight the potential of the
emerging field.

Supply chain results can be aggregated within the IBLG
approach, to provide aggregated scores for every supplier and
asset within the supply chain. Existing geospatial datasets
defining the location of transportation infrastructure (e.g.
roads, railways) can be used to develop a standard score of
the ‘ecosystem and biodiversity’ cost for any given route —
enabling the estimation of ‘transport biodiversity costs’ for the
shortest routes.

The concepts outlined can be united into a single datasheet, to
define results for any given asset (or aggregation).
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EXPLORING A SYSTEMATIC APPROACH TO GEQSPATIAL INSIGHT

As we develop solutions to aid understanding of ecosystem and biodiversity impact, there is a
temptation — as it is such a complex topic — to build ever more elaborate frameworks, models
and solutions to address that complexity.

We argue the opposite. First, we should ensure we have the basics achieved - in this case,
the ability to detect and assign the most serious ecosystem and biodiversity impacts at

an asset level. After this, we can unravel more niche impacts and topics. However, it is
important that any solutions developed are not created to the later exclusion or restriction of
the integration and development of other areas, such as dependencies, opportunities and
neighbouring topics (e.g. social issues, climate change) or the addition of more granular data.

This means we need a framework to work within which allows us to tackle issues around
ecosystem and biodiversity impact but still enable expansion. As with the periodic table, we
first should define the simpler elements, hydrogen, and helium, but ensure that the framework
has the flexibility to tackle the more complex questions around impact on biodiversity and
reliance on ecosystem services.

To move the geospatial ESG ecosystem and biodiversity insight forward, we raise some
concepts for discussion, specifically:

« The spatial division of impact/s

a. |Internal

b. Bordering
c. Landscape
d. Gilobal

« Division of observational data

a. Baselines

b. Environmental context
c. Directimpacts

d. Indirect impacts

+ Supply chain and transportation (infrastructure) impacts

+ Uniting components

The concepts outlined here are to be viewed as draft concepts to encourage debate
and catalyse efforts; each component will need careful consultation, peer review,
standards, benchmarking, etc. to test its validity.

SPATIAL DIVISION OF INSIGHTS

To simplify the complexity in assigning ecosystem and biodiversity impact to assets, it useful
to consider using fixed (or relative ratio) area values to capture and categorize impacts. Here
we propose the following area definitions (Figure 22).

i)  Internal (I) — values reported within the property boundary of the asset.
ii) Bordering (B) — values reported in the immediate area bordering the property (<km)
iiij Landscape (L) - values reported within wider landscape/s (1-1,000km)

iv) Global (G) - values for a given metric with impact beyond >1000km (e.g. GHG emissions).

INTERNAL (1)
(Impacts within the Property)

BORDERING (B)
(Impacts immediately outside the Property <1 KM)

LANDSCAPE (L)
(Impacts within the water basin, local region <100 KM)

GLOBAL (G)
(Impacts with global reach, i.e. GHG emissions,
air pollution, workforce consumption footprint)

Figure 22 - lllustration outlining the proposed area divisions for terrestrial commercial assets —
values within the property, bordering the property (less than 1km), regional values in the surrounding
landscape (1 -1,000km) — and wider global values (=1,000km).

The division of impact into consistent areas is, from a technical perspective, simple and
comes with several significant advantages. First, it helps resolve issues around causation.
Rather than attempt to prove the causation of an asset’s impact, we can reduce the
complexity of the challenge by just factually stating what has occurred within different
area boundaries relative to the asset. This resolves how to assign issues of unclear origin
— for example, deforestation can occur alongside the border of a palm oil plantation; this
cannot be assigned to the asset itself as it is outside the property, but it can be captured
as a ‘border’ impact. By using the same consistent approach for all terrestrial assets
globally, no specific holder or asset class is biased.

Second, it allows the consistent development and application of landscape insights, vital
for dealing with issues around cumulative impact and the shifting magnitude of localized
impact (See Page 86). Impacts within a fixed area designation (e.g. a specific water basin)
can be captured to provide dynamic, consistent and comparable insight into the asset’s
wider landscape condition, which can then be used to adjust IB impact weightings

(See Page 88). Third, by dividing out ‘global’ impacts, those which are which effectively
ubiquitous in Earth systems (e.g. GHG emissions), it provides a direct means for users

to easily consider the difference between an asset’s, or companies ‘localized’ impacts,
within the context of ‘global’ impacts (e.g. habitat loss vs. GHG emissions).

In the next section, we’ll briefly run through each of these (IBLG) area designations,
exploring a few examples.
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INTERNAL (1) INSIGHT

Any values as reported within the property
boundary of the asset itself.

In many cases, (1) results will report relatively
static values. This is because most assets —
fields, factories, real estate — tend to clear all
habitat occupying the near full (95%+) extent of
the property boundaries. This is because land
is expensive, and we tend to optimize the use of
land, particularly in urban areas, where the vast
majority of asset numbers are located.

If we consider different asset types, we can
conceptualize the types of data reported
(Figure 23).

All assets, take up a spatial area; hence, the
historic ‘ecosystem or biodiversity baselines’
(e.g- AD 1500, 1990, 2000, 2010, etc.) or
regional uniqueness can be measured to
provide a baseline. From there, any post-1980
observational datasets (e.g. land cover, ground
carbon, water coverage, etc) can be measured
for the sites — capturing and defining over
time any direct impacts (habitat clearance /
restoration) over the last 10-30 years®® within
these property boundaries.

After considering direct impact, it is possible to
consider indirect impact, via actual or modelled
observational data insight. This is where biome
and sector specific metrics are useful. For
example, we could look to measure the infra-red
heat profile of the shopping centre to estimate its
likely power consumption or the extent of carbon
loss from deforestation.

In many cases, indirect impacts may not have
an ex-situ data solution, where it is simply not
possible to measure some variables (e.g. heavy
metal soil pollution). This is a reality of any ex-
situ data solution, where some measures can
only be achieved with in-situ, ground data. To
aid filling these shortfalls, it may be useful to use
Landscape (L) insight to provide some level of
insight (See Page 88) and/or to fill those gaps
through data triangulation (See Page 55).

Figure 23 - Satellite images illustrating three different types of asset classes,
top), shopping centre, Cairns, Australia; middle), field, Madhya Pradesh, India;
both showing their true property boundaries (orange); bottom) bauxite mine,
Paré, Brazil with estimated boundaries (blue).

BORDERING (B) INSIGHT

Any values reported in the immediate area
bordering the property (<1km).

If we consider the three examples in Figure 24,
we can see that by applying a buffer of 1km to
an asset, we can use the observational data
captured to provide the immediate context to
the asset.

The immediate area around any given asset
provides insight into its potential for wider
direct or indirect impacts; if no existing habitat
is surrounding the asset, its likelihood for
expansion and localized indirect impact is,
generically speaking, diminished. If, however,
as in the case of the mine, it is surrounded by
pristine habitat, it’s potential increases. It is
possible to define what is within this bordering
area and any changes to it, via observational
datasets, such as land cover, biomes,
ecosystem, species data, etc., to provide insight
into the past and current context of the asset.

One consideration to note: when applying
‘buffers’ for (B) insights, it may be useful to use
a more sophisticated approach to determine the
extent of the buffer, based on the asset’s size

or sectorial risk profile, as it might be illogical to
apply a 1Tkm buffer to those assets with a smaller
footprint (e.g. 10 m?). To keep the concept
simple for now, we suggest a standard 1km
buffer — but it is likely this can be improved.
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Figure 24 - Satellite images illustrating three different types of asset classes:
top) shopping centre, Cairns, Australia, middle) field, Madhya Pradesh, India,
with their true property boundaries and 1km buffer (orange); bottom) bauxite

mine, Para, Brazil with estimated boundaries and 1km buffer (blue).
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LANDSCAPE (L) INSIGHT

Any values reported within wider area designation/s (1 —1,000km).

Understanding what impacts have occurred within an asset’s property (I), and just outside
(B) is, of course, important. However, this understanding also needs to be put into context
of the wider landscape (See Page 86). If, for example, an asset is operating in a landscape
with stable forest cover, its IB impacts are likely to remain constant. If, however, forest
cover is being lost dramatically in the wider region, then the importance of any remaining
forest increases, as do the significance and magnitude of any ongoing or novel localized
(IB) impacts on the remaining forest.

Here we propose the use of water basins and sub-basins® as naturally occurring nested
non-subjective divisions of the landscape (Figure 25), as water basins, controlling the flow
of water, naturally often aggregate impacts within them, and biodiversity and ecosystems
tend to loosely align.

Figure 25 — Global map showing the HydroBASINS division of the world into water
basins and nested sub-basins (Level 6).

To develop landscape insight, it is simply a case of assigning each asset to the
‘landscape/s’ it is located within®; in this case we propose sub-basins (Level 6).
‘Landscape values’ for those areas can be generated using observational data and
trends detected (e.g. ongoing year on year habitat loss). This provides insight into both
cumulative impacts and the relative magnitude of impacts within a given landscape,
allowing the adjustment of the impact weightings and aiding in the capture of the
magnitude of localized impacts within the context of wider scale trends (See Page 86).

Figure 26 — Simple illustration of the area within

the water basins (Level 6) of three different types

of asset classes, top) a shopping centre; middle)
agricultural field with their true property boundaries
and 1km buffer (orange), and bottom) a bauxite mine
with estimated boundaries (blue).
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GLOBAL (G) INSIGHT

Values for a given metric with non-localized impact beyond 1,000km (e.g. GHG emissions).

In some cases, impacts do not remain bound to a specific area but dissipate into the Earth’s
systems, for example, air pollutants and emissions, such as NOx or GHGs, that disperse into
the atmosphere. Such impacts are effectively ‘global’ in range — where GHGs emissions are
driving global issues such as climate change and ocean acidification.

These metrics are assigned to (G) and allow users to consider, and make their own
determination as to the significance of, the more localized impacts against global impact/s.
Some assets and companies are likely to have low localized impacts but high global impact
(e.g. aviation), and vice versa.

DIVISION OF OBSERVATIONAL DATA / METRICS

To simplify the complexity in understanding what environmental assets, the landscape
condition, and what direct and indirect impacts are associated within the IBLG areas for a
given asset, its useful to consider fixed thematic divisions. Here we consider the following:

+ Baselines — The historic ‘biodiversity’ or ‘ecosystem’ values.

+ Environmental Context — The extent of defined environmental assets present.
+ Direct Impacts — Any natural or human direct impacts.

* Indirect Impacts — Any natural or human indirect impacts.

+ Additional Variables

- Reflections On Supply Chain and Transportation (Infrastructure) Impacts

- Supply Chains

This provides context of any asset, allowing the aggregation of data points, which can be
quantified into comparable formats (See Page 82).

BASELINES

If we accept that a data- and model-agnostic approach is vital — needed as different actors
will inevitably wish to use different asset, supply chain and observational datasets, or change
and upgrade these, and apply differing models for tailored social, climate, biodiversity

and ecosystem insight — we will need a framework which allows flexibility in the data and
models applied, but still has uniting standards that ensure approaches are interoperable and
comparable. As a central component of this, we propose the need for consistent ‘baselines’®
to compare current ecosystem and biodiversity values against.

ESTABLISHING GLOBAL BASELINES

If we do not apply a baseline, a global layer which tells us the original ecosystem and

biodiversity site value, what we’re effectively doing is focusing on any impacts after the 1980s.

This is when the satellite imagery record began, and in most cases, due to data quality,
we’d be only assigning destructive impact post 1990, if not 2000, when many key geospatial
observational data products started in earnest.

So, which is the right year?

If we set a date, perhaps one which works for the data available, we’re effectively determining
that any identifiable impacts, such as major habitat loss, before that date are non-assignable.
This creates a range of problems. First, it is aggressively unjust — it suggests that those nations
(often the developed nations) which had already destroyed many of their environmental assets
prior to the 1980s are free to use their cleared lands as they wish for economic advantage,
whereas those who had not (often developing nations) will have any future impact assigned to
their ‘environmental performance’.

Second, failure to capture historic impact will create biases in assessment of those sectors,
companies and supply chains which are within areas cleared prior to a feasible date of
measurement. As we move towards estimating the ecosystem and biodiversity impact

of companies, supply chains, soft commodities, etc., against each other (peer-to-peer
comparison), factoring this original cost will be essential. Finally, from a planetary management
perspective, the Earth’s systems do not make any such temporal distinction — any ecosystem
loss or degradation counts within the local, regional and global system.

The central issue with establishing baselines is that species distributions and ecosystem
extent have been changing both naturally and by humanity’s influence for thousands of years.%”
For example. England’s anthropogenically-driven forest loss is now thought to have emerged,
significantly, over a thousand years ago.® As a result, we lack granular global data for how
biodiversity was previously arranged. One solution to this is to step away from current land
cover and species range approaches for defining current biodiversity and ecoregion extent,
and instead focus on quantitative variables that predict biodiversity (See Page 70). Although
not conceptually critical, we suggest a theorical historic baseline of 1500AD, as this is the
baseline used for assessing species extinctions within the [IUCN Red List.

Within this document we propose a possible approach to this not as the solution, or as a
novel development, but to encourage debate and others to rapidly develop ‘Global Baselines’
for geospatial ESG application. The reason is twofold: first, the development of robust
baselines will take significant collaboration and wide agreement, and will require scientific
peer review. Second, since the geospatial approach is data-agnostic, we can and should
encourage multiple baselines. From a data perspective, the only requirement is that each has
an identifiable name, and that is included in end results (e.g. ‘baseline V2 applied’). Baselines
can be updated, and users will be able to select the baseline they consider the most robust
for their needs.

Inevitably, over time, a small number of baselines will emerge as the most authoritative,
and it’s likely they will have a high degree of consistency between them.

CONSIDERATIONS FOR BASELINES

Here we outline one potential way forward to developing a global baseline, to catalyse debate.
For geospatial ESG applications, ideally, we need a high-resolution global layer (10m). To
develop such a product, it is first useful to consider the patterns that govern the global
distribution of biodiversity.

GLOBAL BIODIVERSITY DISTRIBUTION

For over 200 years, ecologists and biogeographers have struggled with the question, What
determines the global distribution of biodiversity?°°

Entire fields of research, thousands of papers, have been dedicated to understanding the
spatial distribution of biodiversity, often as measured by numbers of species in an area
(species richness). While the field is complex and no consensus has yet been reached, it is
enough here to point out the general and well-documented patterns, the known relationships
between biodiversity and physical variables (Figure 27). It is important to note that we are not
interested in why these patterns exist, as much of the research is focused on, but the value in
using these known patterns to predict global patterns of ‘pre-human impact’ biodiversity.
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Very simplistically, some key factors are:

+ Area - as area increases, biodiversity increases: the larger the area (land or sea), the greater the
opportunities to support species richness and speciation.

+ Latitude - the increase in species diversity from the poles to the equator has long been well
documented, referred to as the latitudinal diversity gradient (LDG).'°° Hillebrand’s 2004 meta-study
of 600 studies' showed that species richness increases towards the equator but that the trend is
stronger regionally than locally, and although the trend does not differ between northern and southern
hemispheres, it is asymmetric, not quite aligning to the equator.

+ Elevation — species diversity decreases with increase in elevation.

+ Rainfall - as rainfall increases, biodiversity increases.
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Figure 27 — From Gaston, 2000 — graphs showing spatial distribution patterns in species richness. a, Species—
area relationship: earthworms in areas ranging from 100m? to >500,000km? across Europe'®2. b, Species—latitude
relationship: birds in grid cells (~ 611,000km?) across the New World'®. ¢, Relationship between local and

regional richness: lacustrine fish in North America (orange circles, large lakes; blue circles, small lakes)'. d,
Species—elevation relationship: bats in Manu National Park & Biosphere Reserve, Peru'®. e, Species—precipitation
relationship: woody plants in grid cells (20,000km?) in southern Africa'®®.

VALUE OF EXISTING PRODUCTS

There are many differing approaches, already achieved, that might be relevant to developing
global baselines for geospatial ESG applications. For example, aggregated species range
maps have long played a role in ecology, and today there are multiple data products, defining
areas of interest such as global biodiversity richness'?,'% (e.g. number of species per km?) or
defining the original extent of ecosystem and biome ranges and conditions (Figure 28).1%°

n

Figure 28 - From Dinerstein, et al., 2017'°. 846 global ecoregions nested within 14 terrestrial biomes.

Such area definitions can be used to estimate the original extent of species richness
or the original extent of varying types of ecosystems and their traits and, importantly
for conservation purposes, used to assess the extent of remaining habitat within these
regions. Any existing data product can potentially be integrated with other data, or
approaches, to refine insight.

ECOREGIONS 2017 BResolve
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BOX 5 - DEVELOPING A BASELINE FOR BRAZIL Figure 29 - The

. . uniqueness of each cell
For geospatial ESG applications, we need create one or according to elevation

multiple historic points of reference, either on the original _ - , _ A slope and aspect,
‘biodiversity’ values for a given area (e.g. richness, R e w P PR within Brazil.
abundance) and/or the original ecosystem present and ' fce! R ; ' - - '

its associated values (e.g. habitat type, biomass, species

richness, abiotic uniqueness, etc.). These insights can be

arranged at a global scale or normalized within a given area

such as an ecoregion or biome — or potentially a water basin,

to align to the IBLG approach.

To illustrate the concept, we estimate Brazil’s abiotic
uniqueness. Here using ArcGIS Pro 3.0.2, we took a
Digital Elevation Model at 250m resolution and defined the
uniqueness of the physical elevation, slope and aspect
within fixed range categories. We then compiled these
three variables together to give us the ‘physical elevation
uniqueness’ for every cell (Figure 29).

Using the same approach we defined the ‘climatic uniqueness’ of each cell according to its rainfall and temperature for The key point here is that the development
Brazil (Figure 30). Here we only consider two variables, more can and should be considered. of robust baselines for geospatial ESG
application is possible with existing data,
This provides only an outline of the concept, and many more variables (e.g. freshwater) need to be considered and applied where high-resolution Digital Elevation
intelligently. For now, we can integrate these simplistic measures of the ‘climatic’ and ‘physical’ uniqueness of Brazil (Figure Models (DEM) and data on other abiotic
29 and 30) and use these values alongside biodiversity or ecosystem data, or modelled against the global biodiversity and biotic variables are available. Of
distribution patterns (See Page 70). Such an approach should almost certainly not be conducted on a national scale but at course, results can be compared back
the biome, ecoregion or water basin and sub-basin levels, as from a biodiversity perspective, the uniqueness of a cell value to actual biodiversity data and iteratively
is mostly only relevant to the surrounding ecosystem. For example, high elevation in the south of Brazil is less relevant to developed. Indeed, there are existing
Amazonian biodiversity distribution — where localized unique climatic or physical characteristics are likely to offer habitat and ongoing work programmes and
niches and contain irregular biodiversity (Figure 31). organizations (GEO-BON™, Half-Earth
Project Maps''2, Nature Serve USA Map
of Biodiversity Importance'’®) developing
solutions, or alternative solutions in
this space or related areas, that could
potentially be utilized.

What must be stressed is that the
‘conservation community’ must
collaborate and agree on what
product/s should be used as global
biodiversity baselines for geospatial
ESG applications. Total consensus is
not necessary, multiple products can
be used, including site specific and
regional baselines - however, we need
at least one robust, widely accepted
global baseline for real-world use.

Figure 31 — A rough approximation of the
climatic and physical uniqueness of Brazil;
an approach which could be used to infer
Figure 30 - Combined together, the uniqueness of each cell according the potential biodiversity and ecosystem
to rainfall and average annual temperature, within Brazil. uniqueness of a given cell and converted into
biodiversity richness by integrating global
biodiversity distribution models.




ENVIRONMENTAL CONTEXT

Within the IBLG area delineations it is important not just to define the baseline and impacts occurring
within given area delineations but also the environmental variables present and any changes over
time. These can be simplistic measures, such as in which biome the asset is located (e.g. Amazon
Basin, Temperate Forest) or SRS insight, such as extent of forest cover or mangroves, or even more
complex measures only recently possible with cutting edge SRS (e.g. structural biomass).

There are literally thousands of potential observational datasets which could be applied to provide
‘environmental context’ to a given asset. Since our approach is data- and model-agnostic, there is
no definition of which should be applied or a limit on the number of datasets applied; however, it
seems likely that ‘less is more’, at least initially, where it will be easier to benchmark. In many cases,
an effective shortlist of the most robust, regularly updated products is emerging organically: due to
data consistency, availability and accuracy, we repeatedly see the same ‘nature-related’ geospatial
datasets applied within financial, ESG-related applications.

That said, as we move forward, many of these datasets would benefit from improved data cadence
and resolutions to improve geospatial ESG insight (See Page 47).

DIVISION OF IMPACT

Ecosystems face a vast range of impacts." Various frameworks and impact classification schemes
have emerged to provide structure and insight, many built from the IUCN Threat Classification Scheme,
such as that used in ENCORE. These are of course useful; below are ENCORE impact drivers:'®

+ Disturbances - (noise, light pollution)

+ Freshwater ecosystem use — (occupation, use of freshwater habitats)

+ GHG emissions — (CO2, CH4, N20, SF6, HFCs, PFCs, etc.)

+ Marine ecosystem use — (occupation of marine, area of aquaculture)

+ Non-GHG air pollutants — (PM2.5, PM10, VOCs, NOx, SO2, CO), etc.

« Other resource use — (mineral extraction, wild-caught fish)

+ Soil pollutants — (volume of waste matter discharged and retained in soil over a given period)

+ Solid waste — (waste by classification (e.g. non-hazardous, hazardous, and radioactive), by specific
material constituents (e.g. lead, plastic), or by disposal method (e.g. landfill, incineration, recycling,

specialist processing)

+ Terrestrial ecosystem use — (occupation of terrestrial, area of agriculture by type, area of forest
plantation by type, area of open cast mine by type, etc.)

+ Water pollutants — (nitrates, phosphates, heavy metals, chemicals, etc.)

+ Water use — (volume of groundwater consumed, volume of surface water consumed, etc.).

It is important to note a distinction here: natural events (e.g. earthquake, volcanic eruption) can also
cause significant ecosystem and biodiversity impacts. As we look to assign impact to specific assets,
it may in certain cases become important to differentiate these: a farmer may not be responsible, nor
the decision maker, on whether a large area of woodland is lost within their property to a landslide,
natural wildfire, storm damage, etc."® Determining responsibility as to whether such natural activities
are ‘an act of god’ or the results of human activity or mismanagement is a challenge.

As a starting point to simply the impact equation, we suggest the concept of dividing all
ecosystem impacts (natural or human-driven) into two types, ‘direct’ and ‘indirect’.

DIRECT IMPACTS™

Direct impacts are the permanent (5+ years) loss of habitat, such as felling a forest, slash
and burn agriculture, deliberately burning down shrubland, bulldozing for construction, mining
— anything which for the immediate future removes the prior existing habitat. It could be a small
area of the ecosystem (1ha out of 10000ha), or it could be large area. Such impacts are often
easily detectable by SRS and so are often easier to detect, scale and assign within the IBL, (i.e.
the mine cleared this much habitat for the mine, and this area of habitat for its access road).

Direct impacts, while varied in scale and consequence, are arguably from a technical data
perspective the simplest part of the ‘biodiversity’ data challenge to get right, being some of the
most easily measured from ex-situ data. However, these impacts tend to occur at the very end of
supply chains, often in assets held by non-listed actors, in the primary industries. Consequently,
inclusion of supply chains assets, is challenging but vital to ensure a more accurate estimation of
high tier sectors impact (See Page 38).

INDIRECT IMPACTS

Indirect impacts are far less straightforward but vital in understanding the holistic nature-related
impact of an asset. An indirect impact is any impact that, without significant habitat
destruction, limits or lowers ecosystem condition. They are many different types, and they
can cascade silently through an otherwise healthy-looking ecosystem. For example, heavy

metal pollution seeping into waterways causing reduction in river dolphins’ breeding success.
Examples of potentially reductive impacts include over-extraction of freshwater, noise pollution,
introduction of invasive species, poaching, bush meat hunting, tourism, fragmentation, disease,
pesticides, oil spills, shipping traffic or globally overarching impacts such as air pollution, climate
change and ocean acidification.

Indirect impacts are incredibly complex, as outlined in Part One of this paper, varying in realised
impact according to the specific impact event and specific ecosystem in question. Many of them
cannot be detected via ex-situ data solutions, requiring detailed in-situ ground, soil, water, air
and species sampling and long-term research.

For example, illegal gold mining in the Amazon, which uses mercury in the gold purification
process, creates mercury pollution which accumulates in the landscape and food webs."® It’s
thought that 15% of the region’s gold comes from illegal mines, and the volumes of pollution
this generates are not trivial. Mercury, highly toxic, contaminates plants and animals'®, known to
lead to reduced reproductive success and increased mortality.'”?® In a study of catfish, 97% were
found with ‘high’ levels of mercury — on average, five times higher than recommended levels

for human consumption.’?! Annually across the region, it is estimated that 130,000-220,000
healthy human lives are lost due to disability induced by moderate or chronic metallic mercury
intoxication.™ The nightmare that is mercury pollution cannot be overstated: it is a volatile
chemical that does not disintegrate over time — often pollution is irreversible and difficult to
contain.'?® Halfway around the world, in the backcountry of New Zealand, a micro-scale pollution
issue is causing trouble for one species. Lead pollution is a threat to the Kea, an endangered
parrot. Thought to be attracted to the metal’s sweet taste, the birds find, and chew lead fixtures
introduced into their habitat, on mountain huts, mines, etc., It has become present in their
blood, causing a range of health issues and mortality,'** in part — amongst other threats, such as
invasive species — limiting their survivability.

These are two examples of indirect (reductive) impacts of different magnitudes — silent impacts
that can go unseen within an otherwise ‘healthy-looking’ ecosystem. While it might be possible
to create proxy metrics for mercury pollution (e.g. extent of illegal mining sites), understanding
the indirect, reductive impacts of mercury pollution on biodiversity and ecosystem condition,
and how it exacerbates other issues, will require long-term and detailed in-situ field study. While
in the case of the Kea, no ex-situ, SRS-driven solution can capture and report such a hyper-
specific indirect impact, nor may various such hyper-niche topics be justifiable for inclusion. As
we’ll outline on Page 94, to begin to surmount such specificity issues, we envision an ‘app store
model’, where users, or machine rationalisation, will be able to select from thousands of third-
party-developed datasets and models to draw, generate or create specific estimates of direct
and indirect impacts from specific asset types operating within very specific ecosystems.
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Above - Maxar WorldView-2 satellite image
showing mining barges on Pure River,
Colombia, on June 2, 2021.Satellite image
© 2022 Maxar Technologies.

(See: Hettler, B. (2022)

Gold mining barge in the Tapajés River, Juruena National Park - Maués, Brazil
© Andre Dib / WWF-Brazil




ADDITIONAL VARIABLES
REFLECTIONS ON SUPPLY CHAIN AND TRANSPORTATION (INFRASTRUCTURE) IMPACTS

Infrastructure assets (e.g. railways, powerlines, undersea cables, roads, etc.) can be assessed as
standard within the geospatial ESG approach. However, transportation infrastructure has an additional
application within geospatial ESG - providing insight into the biodiversity and ecosystem implications of
the movement of goods between assets for supply chain assessments.

As we connect supply chains together, it becomes important to factor in the ecosystem and biodiversity
implications of the infrastructure (e.g. roads, rail, ports, airports) used to transport goods, in terms of
shortest route distance.'?® Rather than running an assessment for each unique supply chain, it seems
logical to simply define the biodiversity and ecosystem metrics (e.g. habitat loss per km, fragmentation,
wilderness exposure, etc.,) for every road, railway, and transportation hub globally. These metrics can
then be immediately aggregated for any given route, to provide insight into the overall ‘biodiversity
impact’. Key variables, such as if the first connecting node is unique (e.g. a road built solely for one
asset, e.g. a mine access road) can be highlighted; these are important — often cutting through
previously untouched areas. This approach could follow the IBLG methods, focusing on the internal and
bordering impacts of a linear infrastructure (See Page 62). However, it seems probable specific metrics
and methods will need to be developed for defining the biodiversity and ecosystem ‘costs’ associated
with different types of linear infrastructure.

Interestingly this process has a parallel where insurers have defined extreme weather vulnerability
(based on historic wind, rainfall, etc., natural hazard data, and climate change data) of linear
infrastructure, to define specific assets’ vulnerability.

Figure 32 - lllustration of the
concept of developing global
scoring for transportation routes,
in this case roads, allowing easy
aggregation for any given supply
chain transportation route. Here we
look at the combined IB impacts of
‘protected area exposure’ of roads
in South America. Of course, more
complex, insightful approaches
should be developed.

Since there are robust, open datasets on linear infrastructure, an opportunity is present for the
community to collaborate to agree on and create open global datasets on linear infrastructure’s
‘biodiversity and ecosystem impacts’ for geospatial ESG applications. Again, consensus is not
required; multiple products can be used - however, a widely accepted global standard dataset
would most likely support adoption.

SUPPLY CHAINS

Although not explored in detail in this paper, we should
note that a geospatial ESG approach theoretically has no
issue with the integration of geospatially derived supply
chain insights, where each supplier’s asset/s can be

assessed following the same method as for an owned asset.

Essentially the hundreds, or maybe tens of thousands, of
suppliers are assessed, and their values aggregated (Figure
33). The distance between suppliers, and the transportation
metrics can potentially also be included (See Page 78).

-~0—

The major challenge with supply chains is access to data,
where even commercial providers have struggled to make
headway within this space. Until detailed and accurate data
can more readily be accessed, supply chains will remain
problematic to factor into any ESG solution.

Within this document, we make the case that secure one-
to-one data sharing offers the highest potential for Fls

to gain access to supply chain data within the emerging
geospatial ESG data ecosystem (See Page 102).

-—0—
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Asset/s (IBLG Scores) Supply Chain(IBLG) Aggregation Scores
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Company (IBLG) Aggregation . Transportation (IBLG) Scores

Figure 33 - Simple diagram outlining how supply chains can be assessed within the IBLG geospatial ESG

approach, potentially including transportation insight.
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UNITING COMPONENTS

If we take an asset, the IBLG area divisions, baselines, environmental context, and Figure 34 — Simple data-agnostic approach to standardising how we assess ecosystem and biodiversity impact for a

observational data landscape condition insights, the direct and indirect impact divisions and specific asset, capturing original baseline values for historic and recent years and allowing comparison to recent changes
a temporal component, we emerge with something like the following: detected via remote sensing satellites. We are, of course, not attempting to list specific direct or indirect metrics for asset

classes but rather taking the approach of dividing the topic, via time, impact type and spatial dimension.
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A few points are useful to consider: + Direct and Indirect Impact/s — Here we have divided these impacts to align to the ex-situ data reality, where it is frequently

more technical possible to capture direct impact, from ex-situ data. While of course indirect impacts, such as heavy metal
pollution, have significant consequence on ecosystem condition, many cannot be captured well or at all by ex-situ technologies
- suggesting the need for a wide range of data products and solutions to provide estimated, modelled or in-situ insight.

+ Temporal Component - Any approach used must be able to consider impact over time. Here we loosely suggest from
1985 onwards, aggregating results to quarters. Inevitably different metrics will have differing frequencies (some dalily,
others annually) driven by the technology, data product and the impact being assessed.

- Understanding when an impact occurred is important; first it gives the ability to track how specific impacts evolved, No data solution can solve the biodiversity puzzle alone. Geospatial ESG approaches cannot provide insight into all aspects or
providing an understanding of frequency of the impact/s. Second, it allows the correlation to temporal values, such as highly granular detail into specific components of ecosystem condition. However, they do provide a highly valuable additional
changing vulnerabilities (e.g. breeding season) and ownership. Where ownership of assets changes over time, a current lens that can be combined with other data approaches to add to other ESG approaches.

owner may not be responsible for past impacts.
+ Infrastructure and Supply Chains - To keep things simple for now, we have not included supply chain and route

+ Fixed Area Definitions — We suggest the IBLG approach, but of course, any area division can be applied — including transportation metrics within the framework, but essentially, each supply chain asset is assessed in the same way as any
biome, regional and or sector specific delineations. Ideally, we would see wide use of the same area standards across the other asset (See Page 78). Route planning remains an area for further research, where it is not yet clear how to address
financial sector, to enable interoperability and comparison. shipping and aviation routes; this is reliant, in part, on what supply chain data become available.

+ Baselines — Both historic (See Page 68) and actual baselines can be applied; here we show three in use, historic (1500AD), + Data- and Model-Agonistic - As stressed throughout this document, this approach is entirely data- and model-agnostic.
2000 and 2020. If assets were developed or altered post-2000 or 2020, these baselines give the advantage of more Only a consistent framework is required: here we propose the use of the same entity identifiers, baselines and environmental
accurate comparison insight. Site specific or regional baselines could also be applied. context; the same area delineations (IBLG); the distinction between direct and indirect (destructive and reductive) impacts; etc.

+ Environmental Context — The use of internal (l) bordering (B) and landscape (L) area delineations offers insight into the

context (and changing context over time), of the immediate and wider position of an asset and the shifting magnitude of its Here we describe these concepts as a starting point, to aid discussion and debate. It should be noted that from a conservation

impact. This data arrangement has the benefit of linking closely to other topics, such as dependency. science perspective, there are technical inconsistencies and issues in the insights generated via such an approach. However,
it is important to consider these shortfalls in the light of the application, and ask whether such methods, despite their
+ Landscape Condition - While we make no statement here as to which combination of metrics, or models, would be limitations, offer improved value to the financial sector.

appropriate to provide insight into the ecological condition for a given biome, ecoregion or landscape, we provide two
cases studies as examples of the approach (See Page 88). We expect this area of research to develop and refine as

geospatial ESG methods are developed and as in-situ data products improve In the next section, we explore the issue of quantifying biodiversity and ecosystem impact insights.



N\

W ek
QUANTIFYING BIODIVERSITY
*AND ECOSYSTEM IMPACT

X

o=

b
\%J:«,j
f 4
A&

Maxar WorldView-2 satellite image showing MV Wakashio and tugs, on August 15, 2020.
Satellite image © 2022 Maxar Technologies.

KEY POINTS

A single unit of measurement is often considered desirable

for ‘biodiversity’ or ‘nature-related’ impact as it simplifies
understanding. Within the climate space, the unit used is often
a ton of carbon, a fixed unit of measurement to which any GHG
emission issue can be converted.

Within the biodiversity space there is no straightforward
equivalent — there is no ton or inch of ‘biodiversity’. Despite this
there have been efforts to produce a single measurement unit
to define ‘biodiversity’ impact.

For nature-related geospatial ESG insight, we suggest that the
advantage in doing so is heavily outweighed by the technical
difficulty, the large potential for error it creates and confusion
around what the value reports.

Instead, we recommend reporting direct measurements for any
given metric, applying peer-to-peer comparison.

Since geospatial ESG methods are able to consistently screen
the assets of entire sectors, we suggest using percentiles,
direct or adjusted to landscape condition, and/or biodiversity
values (e.g. rarity, richness) or user weighted values as a simple
means to compare assets or companies across differing
metrics. This enables the simple identification of which
companies have multiple assets flagged within extremely high
or low percentiles for any given set of metrics.

As touched upon throughout the paper, the impact of any given
asset varies with the current resilience of the ecosystem. Here
we outline in detail how the magnitude of IBLG impacts can
potentially be adjusted to Landscape condition insight. These
weighted adjustments can of course be applied within peer-to-
peer comparisons.
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Across insight into ‘biodiversity’ and ‘ecosystem
condition’ in general, a range of measurement units will
be reported capturing differing variables. Frequently
this will be an area value (e.g. km?), but it can also be
categorical (e.g. ecosystem type, species rarity), a range
of statistics (e.g. mean, min, max, STD, etc.,) and in
different units (km, kg, PPM, etc.).

The question that arises is how to convert these values
into quantifiable comparable units of ‘ecosystem
condition’ and or ‘biodiversity’ values. Within the climate
change data arena, the issue is simple: it is possible to
covert or report results in universal accepted quantified
units, (e.g. a ton of carbon). Within the biodiversity
space the issue is less straightforward — there is no inch,
kilogram or ton of ecosystem or ‘biodiversity’. We cannot
talk of 5.5 ‘tons of ecosystem lost’.

There is an increasing body of work which has and is
attempting to create “‘biodiversity measurement units’.
For example, the UK government is working towards
developing a ‘Biodiversity Metric’'?¢ designed to
calculate, with in-situ data, the biodiversity net gain within
given areas as required under the 2021 Environment Act
and within future legislation, giving a site baseline and
forecast future biodiversity values.

Impact Ex-Situ Metric Available?

1. Forest Loss

Direct Impact/s 2. Grassland Loss

3. Etc...

1. Freshwater use (Groundwater)

2. Light Pollution

3. Noise Pollution

4. Water Pollution (Chemical)

5. Water Pollution (Heavy Metals)

6. Air Pollution (PM2.5)

7. Air Pollution (PM10)
SRR o Air Pollution (VOCS)
9. GHG Emissions (CO2)
10. GHG Emissions (CH4)

11. Fertilizer (Nitrogen) Runoff

12. Soil Contamination (Lead)

13. Invasive Species

14. Etc...

More broadly, other efforts could be considered as attempts
to move towards a systematic unit for measurement for
‘biodiversity’, for example:

+ Mean Species Abundance (MSA) is a measure of the
current abundance of species relative to their abundance
in the equivalent undisturbed ecosystem. Ranging from
0 and 1, higher scores suggest greater local biodiversity
intactness. Derived from the GLOBIO model,”?" it is an
accumulated function of six human pressures (land use,
road disturbance, fragmentation, hunting, atmospheric
nitrogen deposition and climate change); the core model
considers pressure—impact relationships.

+ Potentially Disappeared Fraction of Species (PDF) is a
measure of the percentage of species lost in 1 m? (land) or 1
m? (water) in one year in a specific area due to environmental
pressures. It is derived from the ReciPe model, originated
from the pharmaceutical sector — where the potential
environmental toxicity of a substance is expressed as a
fraction of the species that potentially disappears when the
substance is introduced into a given environment.

Within geospatial ESG applications, it’s important to
consider the technical challenges in converting impact into a
biodiversity or ecosystem impact against the advantages in
doing so for the common ESG use cases.

Unit of Measurement Conversion to Biodiversity /
Ecosystem Impact

Sq KM

Sq KM (?)

Liters
Candela per Sg M
Deci Bels (dB)

PPM

PPM

PPM Peer to Peer Ratios/

Comparison

PPM

PPM @

PPM

PPM

Kg/Ha / PPM

Mg/g (micrograms per gram), mg/kg, or
ppm (parts per million)

?

Figure 35 — Table illustrating the challenges in converting differing units of measurement into a consistent

quantified ‘biodiversity/ecosystem unit’

In this section, we will look at the trade-offs in quantification, and suggest potential solutions.

DIRECT IMPACTS

Direct impacts are initially simple to quantify in a consistent unit of measurement: the area of
environmental asset lost, relative to spatial footprint (e.g. per km?) or production (e.g. per ton).
These can be additionally expressed, if desired or useful, as ratios (against remaining habitat
with the landscape, ecoregion), trends over time, etc.

Many actors will wish to adjust direct impact results to factor in the importance of other
variables, such as biodiversity richness, endangered species, etc. Such value adjustments,
defining which environmental assets are more ‘important’ than an equal area of another, move
into the subjective. Since the geospatial ESG approach is data- and model-agnostic, third
parties can develop any weighting or adjustment required.

INDIRECT IMPACTS

Indirect impacts are more varied and complex to quantify, covering a huge range of variables
and units of measurement, which are difficult conceptually to factor — what, for example, does
it mean if 10ha of forestry plantation is cut down in one part of the world and 1,000 litres of
groundwater extracted in another? What was each’s ‘biodiversity’ and ecosystem impact, and
how can we combine hundreds of such measures across vastly differing ecosystems?

Considering current methodological limits, it is arguably more practical, understandable and
accurate to simply compare measurements peer to peer — adjusting for location, ecoregion,
spatial size or production of the asset — than to attempt to translate these results directly
into terms of ‘biodiversity units’. However, because different sectors will need to use differing
metrics, (e.g. oil and gas can be assessed for marine oil spills; cotton farming cannot), it is
necessary to find a means to compare differing metrics. Otherwise, it will become difficult to
compare companies from different sectors which have limited overlap in the metrics applied
(e.g. a clothing brand vs. a mining company).

Since, via the geospatial approach, we can (asset data dependent) assess all assets within a
sector, it is possible to determine the percentile range for each metric directly and adjusted
(Figure 36). For example, which palm oil plantation is within the 99t percentile for deforestation
per km? within the last five years? Or which real estate assets cleared more than average
biomass values per km?, adjusted for ecoregion ‘biodiversity richness’.

Company X Metric 1 — Habitat Loss per km? Metric 2 — Habitat Loss per km?Percentile Etc.
Percentile Adjusted for Ecoregion Richness

Mine 1 50.5 46.4

Mine 2 45.6 38.1

Mine 3 88.2 99.2

Figure 36 - lllustration of metrics for a mining company tracking its three mines, reporting their relative
percentile compared to all other mines.

The advantage of percentiles is that they help inform which assets are outliers compared to
their peers, in a format which can be consistently compared again any other metric. Again,
metrics can be adjusted to account for biome richness, social variables, production, spatial
footprint, etc. Additionally, ‘red flags’ (0/1) can be assigned for compliance breaks, such as if
the asset is operating within ‘no go’ sites or sites of extreme value (e.g. World Heritage Site).

It is important to note that the approach of geospatial ESG outlined here is data- and
model-agnostic. More intelligent models - spatiotemporal spheres of influence - can

be built around these inputs, to adjust for ecoregion sensitivity, biodiversity richness

and landscape ecological condition. Or if the data and science develop, models can be
produced which include a translation into a single ‘biodiversity’ unit. However, in the short-
term, we’d argue, the simple method of direct peer-to-peer comparison is a viable solution.



FACTORING IN ‘LANDSCAPE’ RESILIENCE

It is, of course, necessary to adjust results to account for simple variables, such as the spatial
footprint of the asset, production volumes, regional biodiversity richness, etc. It is also vital,
however, to apply the data available in ways which maximize insight — and importantly to find ways
to adjust the weighted magnitude of localized impacts to account for the changing resilience of
environmental assets present across the landscape.

Here we look in detail at the concept of using Landscapes (L) — we suggest water basins — to
provide improved insight into metrics which are not possible at granular scale and to define
landscape condition/resilience, which can then be used to weight/adjust IB impacts.

This approach serves four important functions:

« Often within small areas, such as within property boundaries, many indirect impacts are
difficult to measure via ex-situ SRS solutions but can be estimated across larger areas.

+ For example, mercury pollution within a given tributary or area of the Amazon can be
estimated by tracking via SRS the number of mining barges and the changing extent under
illegal mining operations.'?®

+ Landscape-wide environmental extent and condition indicators are likely to be useful to
adjust the magnitude of localized impacts. For example, if the extent of native
forest cover within a landscape dramatically reduces (90% loss), then the resilience and the
significance of any impact to any small areas of forest within a property boundary within that
landscape also changes.

« Ecosystems are large and often interact with hundreds or thousands of assets. To avoid issues
around the tragedy of the commons and incentivize all actors to address issues within their
landscapes of operation, the indicators describing the overall health of the landscape need to be
assigned to all actors. This will place greater attention on poorly performing actors, as ultimately,
in the long run, irresponsible actors are likely to cost society and the economy.

+ When asset data or exact supplier is unavailable, often it is possible to locate the supplier
or asset to a country, state, municipality, etc. An area-based metric derived from landscape
methods and/or scores can then provide insight into a very approximate likelihood of
environmental impact.

Before we look in detail at two potential examples of landscape indicators - river

environmental flows and forest temporal autocorrelation — we first explore why this is needed.

THE RATIONALE FOR LANDSCAPE INSIGHT FOR 1B IMPACT ADJUSTMENT

The Great Auk was once common across the north Atlantic coastline; flightless and vulnerable, they
were hunted for their down, then as their rarity increased for their skins and eggs for collections.
Their populations plummeted from the 16" to the 18" century. The last pair found were killed on

3 July 1844, on the request of a merchant who wanted the rare bird skins to sell for collections.'?®
History records the names of the men who killed, if not the last, but some of the very last Great Auks.

The Great Auk extinction has a parallel for us now, in understanding landscape impact. The final
blow, the coup de gréce, the final loss of a section of habitat or a species, is dramatic. It gets

our attention and our blame. It tugs at the heart. But of course, it would be foolish to blame the
extinction of a once-widespread species on a few men and one action. The extinction was caused
by endless repeated actions by tens of thousands of individuals over hundreds of years. And so it is
with all impacts to the natural world. In a healthy landscape, with robust ecosystems, minor impacts
are likely to be absorbed and recovered from without issue. As impacts continue and mount, as
habitat declines, each additional impact becomes harder to reverse and recover from, until a tipping
point is reached, and recovery is impossible (Figure 37).

As with the Great Auk, initially impacts can be absorbed; but as impacts continue, resilience
decreases within the ecosystem (or species), and the magnitude of the impact increases as
recovery becomes less and less certain, until collapse is certain (Figure 37).

Biodiversity and Ecosystem Extent and Condition

Impact Magnitude

Figure 37 - Simple graphic illustrating the concept that impact is not a fixed value but changes in magnitude
according to biodiversity and ecosystem condition/resilience. The green line is species, ecosystem, impact,

temporal, etc., specific and will vary in form to each unique situation.

The localized, regional, global and cumulative impacts
of an asset then are not static values but change

with the condition of the biodiversity and ecosystem
present. As biodiversity and ecosystem health
decrease, due to impact within a landscape, its ability
to recover reduces, and a point is reached where
degradation and loss are higher than recovery and, if
continued, will force the ecosystem into collapse. As a
proxy measure, we propose to use water basins*®
(See Page 88) to provide wider ‘landscape insight’

to adjust the IB impact weighting of assets to
approximately account to changes in resiliency.

Photo: Great Auks, birds which were once common, are
now extinct, changing the arrangements of cogs within the
marine ecosystems they were once a factor within.

Specimen No. 8 and replica egg in the Kelvingrove Art
Gallery and Museum, Glasgow.




LANDSCAPE METRICS

On Page 24, we discussed using ex-situ data to provide insight
into ecosystem condition, noting that it is extremely challenging
and almost always necessary to us in-situ data to aid insight.
Further, we noted that there is no widely agreed method for
measuring the ecosystem, or ‘landscape ecological integrity’

of related areas with ex-situ data alone. Consequently, the
question for geospatial ESG then, is what if any insights could
be gained on estimating ‘landscape condition’?

If we accept that we cannot easily define ‘ecosystem condition’

One potential way forward is to select a key set of natural
assets within a landscape (e.g. forests, rivers, wetlands)

and develop methods of estimating their condition, at

a high-level, where it might be possible to triangulate
observational datasets together to give rough insight (Figure
38). Of course, it is important to state that it is necessary to
develop indicators of both global and regional application,
as in many cases it will be necessary for tailored solutions
to provide insight specific to ecosystems and impacts

not found elsewhere (e.g. global forest loss and regional

via ex-situ data alone at this time, we can nevertheless look mercury pollution in the Amazon).
at what proxy indicators we could use that might be accurate
enough for geospatial ESG applications.

) —/r«./\“'\‘/\«/\_‘ J

Global Indicators
(Water Basins — Level 6)

e.g., forest extent, forest

condition kNVDI, river - - Y

e-flow inconsistency 5
MM ..- '-.I’_l W

(Water Basins — Level 6)

Z Regional Indicators

e.g., relative density of
i mercury river barges

Figure 38 — The concept of area-consistent landscape level ‘indicators’ produced regularly and consistently week on week,
month on month tracking back to the 1980s to provide insight on what is occurring within each water basin. This is vital for
1) wider proxy measures of impacts difficult to measure at the fine scale, 2) situational context to adjust the magnitude of IB
impact and 3) to attempt to address issues around the tragedy of the commons.

On the next pages, we explore two such examples; however, caution needs to be applied, as while in most cases
these metrics are likely to provide some form of useful estimation, further research is required to refine benchmarks
and iterate these approaches (e.g. metric correlation to ecological processes, addressing sampling errors,
quantifying relationships and transferability of metrics, etc.) in order to know what exactly these outputs are reporting
and the various complications. Interestingly as the field of geospatial ESG develops, with increased research focus
and access to emerging data and technologies (e.g. eDNA, landscape audio) and improved in-situ data aggregation
and management, it seems inevitable that progress will be made on landscape condition insight. And indeed,
ongoing research, such as GEO BON Essential Biodiversity Variables, is making progress.

Indeed, it seems likely, as the climate and biodiversity challenges deepen, that we will move into ‘landscape
data catalogue’ metrics/statistics being reported as critical data points, across tens of indicators at high
frequency (weekly, monthly), as we see now with key economic data points like GDP. For now, it is important
to highlight this issue as a vital area for research and development.

In the next section, we look at two examples of potential estimates of landscape condition.

RIVER CONDITION AS A PROXY MEASURE FOR DEFINING LANDSCAPE CONDITION

Authors: David Tickner, Chief Adviser, Rivers - WWF-UK and Conor Linstead, Freshwater Specialist - WWF-UK

Rivers and related freshwater habitats such as lakes and
wetlands host globally important biodiversity, including
charismatic species such as otters and river dolphins, a
wide array of specialist plants and invertebrates, and more
fish species than are found in the oceans. This biodiversity
is vanishing more than twice as fast as the biodiversity

on land or in the sea.” In response, scientists and
campaigners have set out an Emergency Recovery Plan
for freshwater biodiversity."*? As well as helping financial
institutions to understand risks associated with their
investments, better global-scale monitoring — combined
with monitoring at national, river-basin and local scales -
can help to track progress in implementing this Plan.

Threats to river health and biodiversity include alteration

of river flows through abstraction of water for agricultural,
industrial and domestic uses; pollution from a wide array of
sources; invasive species; construction of dams and levees;
over-fishing; and riverine mining of sand and gravel for the
construction sector. Such threats can impact on biodiversity
individually and cumulatively through multiple stressor
effects. Changes in rainfall patterns and water temperatures
due to climate change are increasingly a concern.

Rivers are also key biophysical features linking landscapes
and connecting terrestrial habitats with coasts and oceans.
Many of the threats to biodiversity in rivers are driven at
least partly by changes in land use. Thus, data on river
health can provide clues to wider landscape condition.

River health data is often classified into water quantity/
hydrology, water quality, physical habitat and biological
variables. Water quantity variables describe alteration

of natural hydrological flow regimes (i.e. the extent to
which natural spatial and temporal patterns of river flows
have been anthropogenically changed) and changes in
water extent, e.g. in floodplain wetlands. Water quality
parameters include water temperature, dissolved oxygen,
biochemical oxygen demand (BOD, an indicator of
microbial activity) and pollutants such as nutrients (e.qg.
nitrogen and phosphorous), suspended sediments, heavy
metals and synthetic toxicants. Physical habitat includes
longitudinal (upstream-downstream) and lateral (river-
floodplain) connectivity, physical features within rivers
(e.g. islands, sandbars) and aquatic or riparian vegetation.
Biological variables include macroinvertebrate diversity
and abundance (a proxy for water quality), fish, non-native
invasive species and primary productivity.

Several national and regional river programmes that
combine in-situ, ex-situ and modelling approaches have
been developed in recent years'® but currently there are
challenges to effective, harmonized global-scale river health
monitoring. Conceptually, the fact that rivers are essentially
linear, flowing features means that indicators that track on
river habitat quality by length or volume would be better
than conventional area-based monitoring and metrics that
are commonly used by the global conservation community.

The narrow dimensions of small to medium-sized streams
(which comprise much of the global river network), variability
of river flows, and the physical properties of water also mean
that SRS technologies have struggled to accurately monitor
changes in flow regime or water levels at sufficient spatial and
temporal resolution. However, initiatives such as the Surface
Water and Ocean Topography (SWOT) project'* are likely to
improve the situation, at least for larger rivers.

One indicator that can currently track global changes in
river health effectively is the Connectivity Status Index.™®
The CSI considers five ‘pressure factors’ that represent
the main human alterations to river connectivity: a) river
fragmentation; b) flow regulation; ¢) sediment trapping; d)
water consumption; and e) infrastructure development in
riparian areas and floodplains. Proxy indicators for these
components were informed by available global data and
numerical model outputs and combined using a weighted
overlay model. The CSI has been used for a number of
purposes, including to map remaining free-flowing rivers
worldwide and to assess the overlaps between protected
areas and dam construction.'3¢

Researchers are now developing pathways for improving
global scale monitoring that build on lessons from national
and regional schemes and indicators such as the CSI " and
recent initiatives such as Global Water Watch'®, funded by
Google, are aiming to make available high resolution, near-
real-time water data using Al technologies. Global-scale
monitoring approaches will inevitably rely significantly on ex-
situ approaches for the foreseeable future and technological
advancements promise better tracking of changes in water
quantity, water quality and physical habitat. Monitoring of
biological indicators using SRS technologies is intrinsically
difficult, with the exception of primary productivity, for

which chlorophyll can be used as a limited proxy. However,
scientists have begun to assemble global-scale data of
biological variables from in-situ datasets'®,and it’s possible
that these could be combined with SRS data to provide better
geospatial coverage.

From a landscape conservation and river health perspective,
one particular need is to develop global monitoring of river
flows. In many contexts, flows naturally change on a frequent
— sometimes daily — basis. Anthropogenic changes to land
use and infrastructure operations (e.g. flow releases from
dams) have greatly affected such natural flow variation,
normally to the detriment of aquatic ecosystems and
biodiversity. A combination of ensemble modelling of natural
or pre-industrial baseline flow regimes and near-real-time flow
data (from SWOT data, for instance) could provide a global
picture of human impacts on river flows. This could serve
multiple purposes including risk assessments for financial
investments in river basins that might be vulnerable to
unsustainable water use.



FOREST CONDITION AS A PROXY MEASUREMENT
FOR DEFINING LANDSCAPE CONDITION

Forests can be analysed to provide insight into their own condition but also potentially
insight into the wider landscape condition, where the sudden and rapid expansion of forest
clearance, increases in artisanal mining, etc., is perhaps indictive of some other social or
economic change.

SRS, with the growth of optical, radar, lidar and high cadence data, has come a long way in
recent decades in linking satellite data (spectral values) to ground truth data, to accurately
quantify changes in forest characteristics (e.g. leaf area index, phenology, biomass, canopy
gap fraction, taxonomic diversity, etc.) across the globe and over time.

This research has potential application within geospatial ESG, as we attempt to understand
forest ecology and condition at scale. At the most basic level, we can define via SRS outputs,
the extent of the forest and any forest gain or loss, week by week. We can apply more complex
methods for improved insight, for example understanding the native, non-native, primary or
secondary forest, or other variables.

To illustrate just one area of potential interest, researchers are exploring the concept of ‘forest
resilience indictors’, methods to identify early indications of regime shifts. For example, Forzieri
et al.'*® have shown that tropical, arid and temperate forests (both managed and intact forests)
are declining in resilience. Only the northern boreal forests seem to be bucking the trend,
perhaps from a warmer climate and CO, fertilization. The global consistency, with 23% of
intact forest worldwide reported to have reached critical threshold of resilience, suggests the
large-scale driver of climate change.

Reduction in resilience is known to be linked to sudden declines in forest primary productivity.
Lower resilience within a landscape suggests a lower capacity to overcome additional impacts
and therefore an increase in the magnitude of any IB forest impacts.

When an ecosystem begins to falil, it has been proposed that a loss in resilience can be
detected from an increased temporal autocorrelation (TAC), reflecting a decline in the system’s
ability to recover due to a critical slowing down (CSD) of system processes. Forzieri et al.
estimated global forest CSD from a 1-lag TAC from SRS product kernel normalized difference
vegetation index (kNVDI) as a proxy for ecosystem productivity. They compared the kNVDI in a
three-year rolling window from 2000 to 2020, using a random forest regression model to filter
out localized environmental factors, which might otherwise hide the resilience signal (Figure 39).

OTAC (yr)
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T
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Figure 39 - From Forzieri et al., 2022: global map of the temporal trend of TAC (8TAC); positive 6TAC values imply a
reduction in recovery rates and thus a decline in resilience, and vice versa for negative 8TAC values. Such research

suggests a possible way forward for developing landscape-scale forest resilience and condition insights.

Further research will be required to better understand the viability of outputs for geospatial
ESG application. Arguably, however, this study is illustrative of the wider efforts within the
remote sensing communities that are taking us closer to improved data products, capable of
supporting geospatial ESG landscape condition indictors.

A key development will be for the SRS community to realize that their outputs could be
of significant value and application to the financial sector, if designed for purpose and
arranged in a universally consistent format, applicable across geospatial ESG-driven
methods and models. Here we suggest producing landscape metrics for water basins
(See Page 68).

REFLECTIONS ON QUANTIFYING BIODIVERSITY AND ECOSYSTEM IMPACT

There is a temptation to be dissatisfied with the above - that it doesn’t quite get to

the heart of the question. It doesn’t define in one single unit the ‘biodiversity’ impact of
any given asset, or company or portfolio. Instead, it provides proxy insights such an asset’s
association with habitat clearance, and effectively unrelated ‘environmental impact variables’
such as light pollution. It gives insight into ‘impact’ variables and less into actual ‘biodiversity
and ecosystem condition’.

The reality is that with the field just emerging, there is — as of yet — no clear ex-situ
geospatially focused methodology as to how to define ‘ecosystem and biodiversity’ impact
for any given asset class or within any given ecosystem As time goes on, we’d argue

that the framework outlined allows the improved integration of in-situ data to allow more
refined models exploring ecosystem condition and getting more into the granular detail of
‘biodiversity’.

However, let us reflect on that fact, that if we were able to do the very basics proposed
here — defining every asset on Earth and its ownership, and links via supply chains within
the economy, and applying observation data to provide insight into direct and indirect
impacts — we would know significantly more than we currently do. We would know

for the first time which assets were within or nearby to habitat clearance. We would know
every company on earth that is engaged directly or via supply chains with assets impacting
high value environmental assets, or legally designated areas. We’d have a nearly complete
understanding of which supply chains were deforestation free and which weren’t. The

list goes on and on. This would be a significant quantum leap forward in our current
understanding. Of course, it would not provide a direct answer as to the true ‘biodiversity’
impact of these assets, factoring in cascading issues and hundreds of other complexities
- but vitally, it begins to build a means, a framework and the data to get us closer to that
objective, while still producing useful insight.

The reality of our position is that within the next 12-24 months, no single team or even wide
collaboration is going to resolve how to estimate for every given asset its actual ecosystem
and biodiversity impact with ex-situ data alone. However, by pursuing the field — by
normalizing and establishing the field; by setting out observational datasets, metrics and the
approach; by building out a systematic data catalogue; by testing and building landscape
condition methods — we will in time position ourselves to provide these more detailed
answers. In short, we argue that instead of building more one-off platforms or solutions,

we should apply the data available now to build the foundations of the approach. Building a
robust data ecosystem will enable the development of a new sector of open and propriety
third-party models and tools catalysing the field and leading to commercially applicable
solutions (See Page 98).

In the next section we explore how we might go about building the emerging field’s
foundations, to produce and iterate ‘biodiversity and ecosystem’ insights.



KEY POINTS

The current approach to biodiversity insight is user driven — a
single flashlight in an ocean of darkness. Only when an Fl
focusses (via a specific standalone tool) on a specific asset
or company does any insight come to light. The rest of the
equation, the impact of other 99.99% of companies and their
supply chains, however, remain in darkness.

Adapting and reusing the same approaches of the past,
reshuffling the same isolated data and platforms, will not solve
the biodiversity puzzle. We need a new approach to light up
every asset, every company at once without the user driving
the equation.

We are under pressure to generate solutions if we are to
influence the biodiversity and climate challenges. Solutions
need to be online within the next 24 months.

One potential way forward, following developments in the
climate space, is the establishment of a data commons. This
would improve data access, potentially across all relevant
domains, and importantly means uniting and iterating data

models and solutions within the community — to help ensure
solutions are not lost in siloed efforts.

Specifically, we suggest that resolving access to asset and
supply chain data will not be achieved via current open or
commercial initiatives. Here we suggest the need for an ‘asset
registry’ within the data commons, with a clear mandated,
funded and tasked actor who is made responsible for
resolving data gaps — promoting a structure where incentives
are placed onto the corporates themselves to maintain their
own asset data.

We argue that supply chain data, as highly sensitive data, will
pragmatically never be ‘openly available’. We consider that

the potential is to design standards and the technical systems
within the data commons to allow the secure transfer of supply
chain data between corporates and specific Fls for assessment.
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MOVING FORWARD

Capitalism has lifted humanity into the modern age; it has
helped provide a better life for billions of people. It is also
now pushing us towards a less biodiverse, poorer world.

On Page 38, we raise the concept of the extinction
economy, the components of the economy on the very edge
that quietly burn, taking us closer to global biodiversity
collapse. Often this means the clearance of critical, high-
biodiversity-value habitat. Such impacts are normally found
at the fringe of our economy, but via supply chains flow up
into its heart. For example, vast acreages of the Amazon
Forest have been and continue to be legally and illegally
burnt, converted to grassland for cattle, then later used

for soya, supporting a vast legal economy. Facing global
biodiversity collapse, the drive and incentive enabling such
habitat loss must be minimized. For the financial sector, this
means providing transparency on the nature-related history
of these assets, and who is buying from these assets.

Of course, there are many complications, and indirect
impacts must also be factored in.

If we are to provide such transparency and help stamp out
the worst of the fire, we must accept that the current efforts
of primarily reshuffling and repackaging the same or very
similar ‘biodiversity’ data or methods of the past to produce
‘new’ isolated products do not scale to provide robust
insight into the ecosystem and biodiversity impact of 99%-+
of companies (and their supply chains).

Instead, radically new approaches, significant investment,
engagement and commitment from a diverse range of
actors will be required. Here we have considered one
approach, a geospatially driven solution, which we consider
has merit to integrate and support the current data
ecosystem (Figure 40).
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Figure 40 - Diagram, adapted from Climate Arc, 2022,"' highlighting the ‘biodiversity’ areas of the

climate/biodiversity data ecosystem that could be radically improved.

It is likely that the increasing volumes of Earth Observation data, remote sensing methods,
rapidly improving machine learning techniques and increasing pressure of society to
understand climate and biodiversity will, in time, conspire to lead to improved opportunities
for insight into the nature-related performance of assets, companies and portfolios.

However, we cannot afford to wait.

The reason is simple: it's commonly reported that we have a decade to address the climate
and biodiversity challenges. Regardless, we know that nature and climate recovery will be
easier, the quicker the response. We know that greater transparency and accountability

on who is impacting the natural world aids real world change. Consequently, the sooner
functional solutions are online, the better, ideally within the next 24 months.

The question that we now face then is, can we get solutions online fast enough?

Will we be in a position in 2024 where Bloomberg, S&P Global, Refinitiv, etc. and the
mainstream ESG data providers are able to offer accurate, independent, geospatially derived
data points on the environmental and ecosystem and biodiversity impact for every asset,
company, region and nation — including supply chains — week on week? Monitoring across a
dozen indicators the ‘landscape condition’ of every water basin, consistently week on week?

WHAT SHOULD WE D0?

First, it’s important to openly acknowledge that there is a problem — that the current status quo
does not provide insight at a useful level of detail: the ongoing proliferation of more siloed third-
party tools and platforms do not appear to have the reach to radically improve current levels

of insight into companies or portfolios. Effectively, it seems unlikely that more of the same is
going to help.'*?

Instead, we should explore what might. Here we suggest that a key part of the solution lies in
a geospatial driven data approach and in working together — not apart.

To illustrate this, consider what a business intelligence provider would need to single-
handedly deliver global insight into biodiversity and ecosystem impact as outlined in this
document? They’d need, roughly speaking;

+ Asset data for every asset on Earth

+ Dynamic supply chain data for every company

+ High resolution and high cadence SRS data

+ SRS capacity and the means to develop metrics/observational data from SRS data
+ Cloud compute to process SRS data and generate GIS insight

+ Ecosystem and biodiversity data

« Ecosystem and biodiversity asset/sector specific impact methodologies

« Landscape condition methodologies/insight

It is effectively impossible for any single actor to pull together the above; it crosses too

many highly specific domains. For sake of argument, a major business intelligence provider
is unlikely to one day find itself in the position of having more biodiversity and ecosystem
data, field access and engagement, and understanding and influence on ecological integrity
concepts than the conservation sector. Nor is it likely to achieve more technical SRS capacity
than the SRS sector.

Rather than each business intelligence provider, or even FI'3, trying to do to this independently
— source its own asset datasets, its own supply chain data, its own ecosystem for SRS data,
its own connections with the NGOs and IGOs to gain access and influence on ecosystem and
biodiversity data and methods — we can build a data commons which allows anyone to benefit
from the work already generated. It is far more practical for us to build interoperable systems,
with clear open/propriety structures, to allow actors to securely pull the data resources they
need, iteratively develop and refine models together — than for each of us to try to secure the
same data and develop the same methods separately.

In short, we need connected platforms of platforms — we need a data commons, where
we can unite data, and crucially share and iterate methodologies, models and code. And
for that, we argue, it makes sense to establish an international independent ‘centre’,
responsible for key deliverables, as without an actor having mandated responsibility, it
seems unlikely that the public good aspects of the equation will be resolved.



DATA COMMONS

A data commons unifies a wide range of data to make it more accessible and useful. For this application,
this effectively means the provision of the necessary data infrastructure, protocols, standards and
security to enable actors to openly or behind paywalls share asset, supply chain and observational
datasets between themselves. On top of this, specific ex-situ biodiversity and ecosystem models and
methodologies can be made openly available to allow actors to together test, benchmark and iterate
solutions. Furthermore, an ‘app-store’ of third-party commercial solutions can be made available,
providing Fls with all levels of access, from raw data to data models and metrics; or conversely ESG
providers can source and develop finalized ESG scores into their systems.

A comparable example comes from Open Source-Climate (OS-C), a non-profit organization which is
providing open-source data and software to aid climate-aligned investment.

0S-C DATA COMMONS

Author: Vincent Caldeira, Field CTO APAC at Red Hat & Chair of the Technical Advisory Council at OS-Climate

0OS-Climate Data Commons is an open data platform that was designed and built from the outset on a
distributed architectural approach for data management in order to address some of the fundamental gaps
in climate-related data that hinder financial institutions (including central banks and supervisors), investors
and policymakers from assessing financial stability risks, and properly pricing and managing climate-
related risks.

We believe these critical gaps, as defined by NGFS in their “Progress report on bridging data gaps”, are
applicable to biodiversity data as well:

+ Data availability: Climate-related data needs to be accessed across asset classes, sectors and
geographies, and over different timeframes. Data may not exist, or lack the appropriate granularity
and/or geographical and/or sectoral coverage, or may not be easily accessible from a technical
perspective. Also, increased volumes of data generated constantly, across a number of heterogeneous
systems, makes it difficult to build consolidated views that stay relevant over time.

- Data comparability: Data generated by a wide variety of sources with differences in design resulting
from the existence of multiple frameworks for climate-related disclosure, as well as lack of consistency
in data formats and standards, makes it challenging for end-users to compare data across sources
and frameworks.

+ Data reliability: Reliability depends on the provenance and quality of the raw data, as well as the
auditability and transparency of the providers and data processing employed. This information is
generally not fully audited and transparent.

0OS-Climate Data Commons addresses this through a data platform built on a data mesh architecture and
on the foundation of open-source components — integrated and interoperable tools and libraries used
every day by data engineers, data scientists and end-users of the data.

There are a number of key principles in adopting and implementing a distributed data mesh, namely:

« 0S-Climate Data Commons defines data domains, which provide a crucial first step in identifying
where vastly distributed climate data exists and what it contains.

+ It identifies owners for data domains, which will empower individuals or groups to define and manage
requirements for data discoverability, understandability, quality and security within their domain.

+ Itimplements a ‘self-service’ model, where access to data domains is defined and managed through
standard and consistent technical mechanisms provided through an open platform, making it easy
for data engineers, data scientists and user organizations to access climate and ESG data without the
requirement of complex technical skills to manage the infrastructure and tooling behind the data.

+ It also defines and implements a ‘federated’ governance model, which respects local autonomy and
agility while also addressing broader OS-Climate organizational and regulatory constraints, as well as
enforcing consistent best practices for data management across the organization.
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Figure 41 - Overview of OS-Climate Data Commons architecture

It is also important to note that OS-Climate Data Commons, as any implementation of a data mesh,
is not a product or a single vendor solution. Rather, it is a composition of components that make it
easier to share and distribute data at scale, and a collection of processes and practices adopted by
the organization, OS-Climate, to ultimately make climate data easier to find, easy to access, easy
to understand and easy to compare. On the technical side, this includes a metadata catalogue that
allows discovering data, a query federation service that helps to integrate and build interoperability
between different and technically heterogeneous data sources, and a policy engine that supports
the formulation and enforcement of data compliance policies across the platform. On the process
side, this approach is supported by the establishment of distributed ‘data products’ that have clear
boundaries and owners, as well as standard practices of ‘data as code’ across the organization.
Data as code is an approach that requires the ability to process, manage, consume and share data
in the same way we would typically use for application source code management, allowing full
transparency and reproducibility of data integration and processing over time.

The OS-Climate Data Commons platform shows a possible path for solving data gaps in
making biodiversity data more easily accessible, and being an open-source initiative, it can
easily be adopted and extended to support the needs described in this document.

WHAT WOULD A DATA COMMONS FOR ‘BIODIVERSITY’ LOOK LIKE?

In the diagram (Figure 42), we show how different types of data — at an absolute minimum, asset and
observational data (SRS-derived) — can be brought together to support a connected infrastructure of
shared and third-party models to generate insight for commercial providers, to Fls, and openly.

Of course, additional complexity could be added, such as more data, supply chain data, improved
entity matching components, water data, climate data, other ESG data sources, cloud compute,
integration behind commercial actors’ firewalls to enable inhouse assessment with propriety data,
etc. One important factor to consider is that a data commons can, as in the case of OS-C, support
the flow of both open and commercial data into its systems, allowing users access to certain data
only if they have paid for access.
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Figure 42 - Diagram showing
the major components a data
commons for biodiversity
and ecosystem insight would
need to contain, pulling in
both open (dark green) and
commercial (light green) data.
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WHO WOULD BE INVOLVED?

Another way of looking at the data commons concept is to
consider the types of actors likely to be involved and at which
steps in the data ecosystem they would participate.

Figure 43 — Diagram showing
the major components of a
data commons as in Figure
42, along with example
organisations.
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BOX 6 - HOW WOULD THIS FIT WITHMAJOR TECH?

Author: Tanya Birch, Sr. Program Manager, Google Earth Engine / Earth Outreach

As the world moves towards spatially explicit insights and accountability of ESG investing, there’s no
shortage of available data from remote sensing and earth observation systems, and there are growing
amounts of in-situ data streams to complement satellite data. With advances in machine learning and
deep learning, earth observation systems and satellite data, cloud computing and emerging biodiversity
monitoring systems, we have the ability to monitor the planet like never before.

While more nascent than satellite data, frequently updating data streams to measure biodiversity
(acoustics, camera traps, eDNA) are rapidly advancing. As a result of platforms like Wildlife Insights,
biologists no longer need to spend hours looking at images devoid of any species when producing
species richness datasets, for example. Similarly, platforms like eBird and Merlin have made
transformative advancements in bird identification, at least in areas of sufficient data like North America.

Still, people are drowning in data and thirsty for insights. Companies who tout their own climate and
nature pledges without providing transparent empirical evidence to substantiate those claims are
accused of greenwashing. As a solution, companies like Climate Engine, built on Google Earth Engine,
exist to help de-risk financial portfolios from near-term and long-term severe weather events, providing
data via APIs (Application Programming Interfaces) into other operational systems.

Nevertheless, biodiversity data is lacking, and there are many different disparate data sources that exist.
The smooth coming together of satellite and in-situ data inputs and models will be the most helpful
when presented in a manner that allows someone without a PhD in econometrics or remote sensing

to derive insights from the data. The concept of a data commons, akin to the Open-Source Climate
initiative, could support disparate biodiversity data streams aligning and providing insights to the
countries and companies who are their ultimate end-users.

A data clean room, where companies upload private, sensitive data to a cloud instance that then gets
aggregated and stripped of any private, personally identifiable or sensitive data, can be key to providing
aggregates to a data commons. Companies straddle a double-edged sword in that they have to protect
their proprietary data (e.g. their supply chain or investment portfolios) while at the same time releasing
enough data, benchmarked against agreed-upon datasets and baselines, to meet standards around
nature-risk or climate-risk and authentically understand the risk their investments present.

Earth observation data combined with biodiversity data streams could inform people making decisions
affecting land use to substantiate ‘nature positive’ claims by companies and 30x30 claims by countries.
A data clean room can also address security and privacy concerns around sensitive data (e.g.
commercially proprietary data or sensitive endangered species data) with access control permissions
intentionally agreed upon in a democratic manner. In a data commons, data and models can be made
openly available, according to FAIR principles, especially when aggregated to remove sensitive data.

There are plenty of pledges from CEOs and governments to address individual and collective climate
and nature risk. When a data commons exists, regulatory oversight, disclosures, penalties when satellite
data and biodiversity data apply when a company or country is non-compliant. With governments,
companies and NGOs/IGOs having access to a data clean room, sharing aggregated data that has
been stripped of data sensitivities and personally identifiable information, combined with restrictions on
data access and data use, the scientific community can support companies’ ESG goals and help them
not only de-risk their own portfolios but support the regulatory environment in shifting towards better
practices across the industry at large.

HOW MIGHT A DATA COMMONS HELP OVERCOME CHALLENGES?

In this section we consider the advantages of working together via a data commons

approach in resolving the following issues:

+ Challenge 1 - Asset Data
+ Challenge 2 - Supply Chain Data

+ Challenge 3 - Observational Data

CHALLENGE 1
ASSET DATA: DEFINING THE LOCATION
OF EVERY ASSET ON EARTH

Moving forward, we need viable approaches to generate
and maintain asset datasets at scale. We need practical
means to define, and critically maintain, all sectors’ asset
datasets, including those with millions of assets. Broadly
speaking we see three current approaches to generating
asset datasets (See Page 44): 1) proprietary, 2) open
(manually created or via SRS or some ML method) or 3)
open — community driven.

Which approach has potential?

Open asset datasets, such as WRI ‘Global Power Plants’
or ‘Palm Qil Concessions’, suffer from three major issues
from a geospatial ESG perspective. First, they tend to be
produced as a ‘one-off’ initiative with no resources for long-
term maintenance; as they age without update, uncertainty
around correct assignment of ownership mounts. Second,
to date they have only proven capable of tracking a low
number of assets, frequently applied to industries with low
asset counts (5,000 assets), with no real demonstrated
scalability. Those few examples over 50,000 assets either
have gross errors, a lack of ownership information or, more
often, face a multitude of issues. Third, they also tend not
to capture key attributes consistently and contain greater
error and data biases, such as recording only the assets of
larger companies.

This is to be expected, as typically open asset datasets
are built and launched to answer a specific research need
and, due to the realities of funding restrictions, are unlikely
to have been developed with the intention of long-term
maintenance or geospatial ESG application.

To surmount these development and long-term maintenance
challenges, one open data approach which shows greater
potential is the open community-driven model. For example,
Global Energy Monitor has built live asset datasets,
maintained by an active online community. Even so, as
shown in Figure 18, these track 1,000-10,000 assets, which
is significantly lower than their commercial counterparts.

An alternative solution to the scaling issue for open datasets
might be around coordination, where different open data
actors could each work on one specific sector and together
work towards wider tracking of assets. However, over

long timeframes (5 years+), either within an open data or
community-driven effort, how certain can we be that these
datasets will be robust, that ownership is correct — for tens
of millions of assets? The reality is that any open approach,
with current technology, is unlikely to succeed at scale, and
even if it does it is unlikely to be sustainable with the weight of
maintenance always present month on month.

As-documented commercial offerings (See Page 44) provide
far higher quality and viable data products for geospatial ESG
application — and can be used for the sectors they already
cover. The issue with the commercial approach is, will they
invest to define other sectors where there is no historic or
proven commercial business model to do so?

Instead, the most viable approach appears to be to place the
burden of maintaining asset datasets back onto the financial
sector and asset-owning companies themselves. Some
corporates have called for an ‘open asset registry’ within
the data commons, which enables the systematic collection
of asset data (with or without ownership, with differing
discoverability and access), uploaded by the corporates
themselves, via financial sector incentives. The development
of such an initiative should be mandated and tasked to initiate
and operate the registry, based on open technology. Such
an effort could be launched rapidly and could be a first step
forward in a longer-term push for regulation and disclosure
efforts, requiring companies to report the location of their
direct holdings into such an ecosystem. Within this data
ecosystem, existing open and commercial asset datasets
could still be connected in, as required.

Of course, regulation and disclosure developments
should also be supported, but it seems unlikely, due to the
timescales of regulation, that such data will be available
within the short term.



CHALLENGE 2
SUPPLY CHAIN DATA: DEFINING THE DYNAMIC
SUPPLY CHAINS OF EVERY COMPANY ON EARTH

Without supply chain data it will remain very difficult to estimate the true impact of actors within
high-tier industries. This is because the higher up the supply chain, the less likely it is that the
business requires direct interaction with the natural world (Figure 14). However, this does not
mean they are less likely to be drawing from, or enabling via supply chains, impacts to the
natural world.

For example, a major car manufacturer is unlikely to clear pristine rainforest for its headquarters
or regional offices, but it may be sourcing its raw materials from mines which are. Knowledge of
each asset’s performance, and supplier’s asset performance, would allow the car manufacturer
itself to act or even change supplier if necessary. It would also provide the Fls with improved
oversight of the ‘biodiversity’ implications associated with the car manufacturer and the ability
to flag the problematic assets with the company.

The most significant impacts are often present at the ends of supply chains, often held by
private, junior, effectively unaccountable actors. Transparency as to which accountable actors
(listed companies) are doing business with these asset holders within their supply chains is a
requisite to reducing incentives and markets for these operations.

Unfortunately, supply chain data is very difficult to gain access to; even the commercial
business intelligence providers have struggled to make headway in this space, often having
to rely on effectively reverse engineered and estimated connections. Indeed, in many cases
companies themselves will not know the full extent of their supply chains; for example, a
supermarket might know that it buys its oranges from wholesaler X, but then no further down
the supply chain.

Due to the data gaps, and significant data sensitivities around supply chain data, where for
competitiveness reasons companies may not wish others to know their suppliers. It is difficult
to envision any possible solution within the next 12-24 months which moves supply chain data
into a more public sphere. What might, however, be possible is the creation of ‘supply chain
data sharing standards’ attached within the data commons infrastructure, to allow a company
to securely share their supply chain data with a specific Fl for analysis behind the FI’s firewall.
This act could be incentivized by the financial sector, slowly normalizing the approach as part
of the due diligence process.

CHALLENGE 3
BASELINES / OBSERVATIONAL DATA / METRICS / IMPACT ADJUSTMENT

The development of the metrics, baselines and key indicators necessary to provide insight
from geospatially driven approaches is still in its infancy.

As we move forward, there is the danger that commercial operators keen to capitalize on the

emerging market will, faced with data limitations, release sub-par data products. This creates
two issues: 1) it undermines the emerging field and 2) it will help normalize low-quality insight
within the field.

To resolve this, various actors will need to move quickly to establish high data standards by
creating widely accepted and peer-reviewed data products themselves (e.g. baselines, route
impact layers, etc). Standards and research will need to be conducted to test and publicly

review those products released, to highlight limitations and strengths within the emerging field.

FINAL THOUGHTS

Our ability to move forward with biodiversity and ecosystem insight, and indeed wider climate and
social and governance insights, will rest heavily on the available asset, supply chain and financial data.
Without this ‘baseline data’, multiple fields of research will stagnate. The flow of this data, then, is not just
relevant for the ‘nature-related’ insights but potentially across all ESG topics.

It is important to reflect on one major point. While the space is complex - it is viable. No new
technology is required. However, who'’s going to do it? Who’s going to establish open standards and
build the necessary public good data infrastructure? Commercial ESG actors will be motivated to
ensure that they have the most robust data offerings in this space, developing, as far as possible, their
own geospatial ESG insights and methods. However, their progress will be limited unless the extensive
public good parts of the equation (e.g. standards, data infrastructure) are also resolved.

In this publication, we have called for a new, independent, unaffiliated ‘centre’ to deliver the components
outlined here, to ensure that the flow and power of the SRS sector can be brought to bear to factor in
nature externalities within the financial sector. This follows developments such as the Met Office Hadley
Centre, established by the UK government in 1990 to aid climate change research.

The development of a geospatial ESG data commons, and a ‘centre’ to oversee developments, has
several major advantages:

» Its moves us away from the current situation, which is not delivering insight. It is ‘a flashlight in the
dark’, which only provides insight on the single assets or company the light is focused on, and
where currently FIs must pay and login to multiple (5+) unconnected platforms to run assessments
themselves. It moves us to a model where all the information is widely available, already processed
and analysed, and integrated into the business intelligence world.

+ It will allow the NGO/IGO a viable payment structure for their data products, with wide reach
connecting across platforms and with low management overhead, as the data infrastructure is
provided for them.

+ It provides a centralized, authoritative place for methods, models and approaches to be tested,
iterated and assessed by the community and domain experts.

+ It will allow the Fls and Business Intelligence providers access to SRS data products, in one place,
without the need for dialogue with a wide variety companies.

+ It will streamline and, in many cases, provide a new business opportunity for the SRS community.
» It aligns and supports data needs in other areas, such as climate change, which can apply the same

asset and supply chain and even ‘environmental’ variables to support climate insight, and potentially
social and governance insight.

The question we face now is, ‘Can we move quickly enough, within the next 12 months, to
radically improve ‘E’ within modern ESG?’
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RECOMMENDED
ACTIONS

We suggest the following key actions, to radically improve
biodiversity insight at the scale required.

JOIN THE CONVERSATION - To push forward the
concepts outlined in this document, WWF will shortly
launch a ‘Geospatial ESG Consortium’. We welcome
financial institutions, conservation actors, tech, earth
observation, remote sensing, ESG providers, etc. interested
in the emerging field to join us.

CREATE A ‘BIODIVERSITY DATA COMMONS’ - We
need to move away from siloed, standalone platforms to a
‘platform of platforms’ federated approach which enables
improved data access and interoperability of asset and
supply chain data, and observational data — integrating into
the financial sector’s data ecosystem.

Action - A ‘data commons’ needs to be established to
enable actors to share critical asset and observational data,
models or approaches — openly, securely or behind an Fl’s
firewall — with robust standards. This needs to radically
improve access to critical asset and supply chain data to
enable assessment and, critically, the building, sharing and
iteration of models and methods.

CHANGE CORPORATE DATA DISCLOSURE / ACCESS

- Every asset on Earth needs to be geolocated, and
accessible in either open or proprietary datasets (within the
data commons). Ownership must be accurately maintained,
and ideally asset datasets should be sector specific,
capturing wider attributes and defining the property
boundaries.

Action — An ‘asset registry’ is needed within the data
commons, uniting via a federated approach, ongoing open
data disclosure and regulation initiatives. While placing
the primary burden of generating and maintaining asset
datasets and company trees onto the corporates.

Action - Develop means to enable the sharing of supply
chain data between a corporate and Fl securely within the
data commons.

Maxar GeoEye-1 satellite image showing wildebeast migration, on August 11, 2009.
Satellite image © 2022 Maxar Technologies.
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DEVELOP AND REFINE OBSERVATIONAL DATA - Clarity needs to be created around biodiversity
and ecosystem observational data, defining robust metrics. Metrics need to be tested and openly
reviewed as to their ability to detect the variable under measurement.

Action — The ‘biodiversity’ community should:
- Align to existing efforts such as GEO BON and GBIF; provide support and iterative guidance

as to which observational datasets, and the metrics derived therefrom, are scientifically
robust and how they might be improved.

Action - The Satellite Remote Sensing (SRS) communities should:
- Align to existing efforts, and collectively identify spatial or temporal gaps and any possible
means of improvement of the observational data portfolio, either via more regular higher-
resolution data gathering or alterative solutions.

- Explore with the wider community novel approaches, such as data triangulation, or the
testing of specific novel metrics.

DEVELOP AND REFINE METHODS AND MODELS - As an emerging field, the core methods of
geospatial ESG for biodiversity and ecosystem insight remain fluid. Critically, areas such as the
framework, area delineations, global baselines and models determining topics such as, indirect
impacts or landscape condition, need to be collectively worked through.

Action - Researchers (perhaps via structured working groups) need to provide clarity on the optimal
methods and approaches. Results should be peer reviewed and published when possible.

CREATE STANDARDS - Across all this work — ranging from basic arrangements for asset datasets to
data security protocols — soft, technical standards need to be developed.

Action - Open-source standards need to be rapidly deployed to aid developments — a large resource of
existing technical standards exists which could be adopted.

ALIGN WITH CLIMATE - Many of the data needs of the ‘biodiversity’ space directly align with the
needs of the climate space and wider ESG needs. Almost all ESG efforts, for example, would benefit
from improved access to financial data, asset data and supply chain data. While eventually, since
climate and nature are interlinked issues, the two will need to be considered together, as and when the
data science allows.

Action - Engage with ‘climate data actors’ early on, when developing data commons, frameworks,
metrics, standards, etc., to identify opportunities for alignment.

EDIT TO: CREATE A ‘CENTRE’ TASKED WITH DELIVERING THE INCLUSION OF CLIMATE AND
NATURE GEOSPATIAL INSIGHTS INTO THE FINANCIAL SYSTEM - Ultimately if no-one is made
responsible for the above, it is likely that progress will stagnate, with commercial actors unable to
resolve the public good aspects of the equation. To ensure the work is delivered, an independent
international research centre needs to be established — connected with existing efforts but tasked and
resourced to ensure the delivery of SRS data, methods, models and public data utilities to aid localized,
regional biodiversity and ecosystem insight and interlinked social and climate issues.

Action - The government/s which take the initiative on the establishment of such a centre or federated
model will place themselves at the heart of the next revolution: the inclusion, via the full weight of the
SRS sector’s power, of environmental and climate externalities into the financial system.



Maxar WorldView-2 satellite image showing the lower Pure River, on September 6, 2019.
Satellite image © 2022 Maxar Technologies.
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ENDNOTES

Where possible we have made attempts to align the terminology used
within this document with that adopted by the Taskforce on Nature-
Related Financial Disclosures (TNFD).

Science-Based Targets Network (SBTN), Taskforce on Nature-
related Financial Disclosures (TNFD) and the European Sustainability
Reporting Standard (ESRS).

WEF, 2022
WWEF, World Bank and Global Canopy, 2022

Biodiversity can be defined loosely as the variability among living
organisms. The term is increasingly used within the financial
community as a byword for anything related to ‘nature’ or the ‘natural
world’. Within the ESG space, there are a wide range of data products
that present, or could potentially provide, proxy insights relevant to
biodiversity and as such are often communicated around or within the
‘biodiversity’ label. For example, a wide range of indirect geospatial
proxies, such as ‘freshwater extraction’ or ‘legal area delineations’, are
used, which without being a direct measure of biodiversity, may still
arguably provide useful insight.

However, for reference, a more complete definition of biodiversity

is from the United Nations Convention on Biodiversity (CBD), ‘The
variability among living organisms from all sources, including, inter alia,
terrestrial, marine and other aquatic ecosystems and the ecological
complexes of which they are part; this includes diversity within
species, between species and of ecosystems’ (CBD, 1992).

Where X could be a specific development for project level finance,
a corporation, a portfolio, a sovereign state or any other variable of
interest.

Throughout this document we’ve tried to discuss matters simply to aid
understanding for a non-biocentric audience; however, it is important

to note that many of the points made here are generalized and are not
meant as robust conservation science statements.

An ecosystem is defined as ‘a dynamic complex of plant, animal
and microorganism communities and the non-living environment,
interacting as a functional unit’ (CBD, 1992)

Cardinale et al., 2012

Where X could be a specific development for project level finance,
a corporation, a portfolio, a sovereign state, or any other variable of
interest.

Ceballos et al., 2015

Complete recovery from prior major extinction events took tens

of millions of years. The Ordovicain required 25 million years, the
Devonian 30 million years, the Permian and Triassic so close together
took 100 million years, Cretaceous 20 million years. There have been
authors, who have suggested that the mixing of species (by humanity
moving invasive species around the world), will fill the extinction

gaps caused by humanity, and that extinction events were followed
by a surge of new species. Combined, this will result in a wealth

of biodiversity. This may one day be the case; however, we know

it will take millions of years of the cogs of the ecosystems to work
themselves back into viable arrangements.

We use the terms direct and indirect with a slightly differing
terminology, to better align to the observational data capabilities (See
Glossary).

Soto et al., 2022

Endemism refers to species restricted to a single specific location,
area or region.

Stewart and Konar, 2012
Rogers-Bennett and Catton, 2019
Rasher et al., 2020
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We acknowledge that improvements in conservation science driven

by new technology and methodologies, such as landscape audio

and environmental DNA, offer potentially new means for large scale
in-situ field data collection which may be relevant for geospatial ESG
applications (See World Bank and WWF (2020)) — however, currently these
approaches are not yet able to provide insight at scale, nor does it appear
likely that will offer insight within the immediate future (next 5 years).

26 ForestGEO, 2022

27 Edge effects can be defined as ecological alterations linked with
development of sudden, artificial edges of forest fragments.

28 Environmental Justice Atlas, 2016
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52 European Commission, 2022
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54 CDP 2022 Questions on Biodiversity:

(C15.1) Is there board-level oversight and/or executive management-level
responsibility for biodiversity-related matters within your organization?

(C15.2) Has your organization made a public commitment and/or endorsed any
initiatives related to biodiversity?

(C15.3) Does your organization assess the impact of its value chain on
biodiversity?

(C15.4) What actions has your organization taken in the reporting year to
progress your biodiversity-related commitments?

(C15.5) Does your organization use biodiversity indicators to monitor
performance across its activities?

(C15.6) Have you published information about your organization’s response to
biodiversity-related issues for this reporting year in places other than in
your CDP response? If so, please attach the publication(s).

55 World Resource Institute, 2022

56 Ecometrica, 2022

57 Maphubs, 2022

58 Integrated Biodiversity Assessment Tool (IBAT), 2022
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60 Verisk Maplecroft, 2022

61 Reprisk, 2022

62 See Finance for Biodiversity (2022) for a detailed overview of these
approaches.
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Pitz, et al., 2014
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We refer to these firms — Bayerische Motoren Werke AG and
Mercedes-Benz Group AG - purely as examples of famous major
companies, with no implication or suggestion of any negative or
positive ecosystem and biodiversity impacts.

Robeco, 2022
Agrillo et al., 2022
See Page 77.

Aggregation of results will inevitability meet complexities as we
attempt to unite differing asset classes: different geospatial metrics or
traditional ESG data points are sector specific and may not be present
or comparable with other sector specific metrics — for example,

a metric for cotton farming pesticide use (within a major clothing
manufacturer’s supply chain) may not fit with marine oil spill detection
(within a major O&G company) within a portfolio scoring. See Page 43
on quantification of metrics.

WWEF, World Bank and Global Canopy, 2022
Global Energy Observatory et al., 2019

This dataset combines different oil and gas assets all as ‘units’,
defining different instances of level, field, block, project, concession,
complex, basin, pool, area, unit, region, and sub-basin within the same
dataset.

Kruitwagen et al., 2021

This dataset reports 68,661 assets. However there is significant error
rate, with many ‘unique’ records reporting the same asset.

Enverus additionally provide detailed asset coverage across a range of
O&G asset types (e.g. concessions, surveying pipelines, rigs, etc.)

Maus et al., 2020

The geolocation of every asset might sound ambitious, but from

a technical standpoint it is viable —complex, asset-rich sectors

have already been mapped (e.g. oil and gas), and already, far more
‘asset level’ data are collected in Google Maps than are required for
geospatial ESG requirements.

DAMSAT, 2022
TNFD, 2022d
EFRAG PTF-ESRS, 2022

See WWF, World Bank and Global Canopy (2022) for a detailed
explanation.

Chang et al., 2021

WWEF, World Bank and Global Canopy, 2022

Data dependant — assuming access to suitable data.
Hydrosheds, 2020

We propose the use of water basins, but of course, other any regional
definitions can be applied for wider landscape (L) context, such as
state or municipality; multiple regional definitions can be used at once.

Geospatially defined global ‘biodiversity’ and/or ‘ecosystems’
baselines arguably already exist in various forms (See Page 69).
However, there is a need to develop robust, widely backed ‘historic’
baselines and establish standards for geospatial ESG application.

Sandom et al., 2014

DEFRA, 2013

Gaston, 2000

Pontarp et al., 2019
Hillebrand, 2004

Judas, 1988

Gaston and Blackburn, 2007
Griffiths, 1997

Patterson, et al., 1998
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Marsh et al., 2022
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Half-Earth Project, 2022
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There is across nature-related insight efforts an increasing complexity
within the terminology used. Here for a non-technical audience, we
attempt to keep the terminology as straightforward as possible. We
define ‘impact’ as an attribute event, either natural or human-made,
that adversely alters the status of ecosystem condition (See Glossary).

Within the natural capital terminology, an impact is different to an
impact driver. Impacts are ‘changes in the quantity or quality of natural
capital that occurs as a consequence of an impact driver’. Impact
drivers are defined as: ‘a measurable quantity of a natural resource that
is used as an input to production or a measurable non-product output
of business activity.” (Natural Capital Coalition, 2016).

As climate change impacts make such events more likely, these
impacts, as a minimum, averaged landscape risk weightings could be
applied to adjust results.

We apply a different definition of ‘direct’ and ‘indirect’ impacts, which
traditionally are defined by causation: impacts known to be directly
caused by operator X. Here we drop the need to define causation,
since often it is impossible to know with certainty which impacts are
directly caused of a company’s operations (See Glossary).

Gerson et al., 2022
Ibid.

Ackerman et al., 2016
WWF, 2018

Steckling et al., 2017

Worse still, it almost entirely avoidable; the mining technologies exist
to reduce the amount of mercury required, or capture mercury used
during the gold purification process before its release. It is likely

that illegal miners are not aware of the risks, or unable to afford the
equipment.

Kea Conservation Trust, 2022

Due to the complications of route identification, where thousands of
potential routes may be present between two assets, it would appear
simplest now to focus on estimated transportation impacts via the
single shortest possible route, although of course more accurate,
intelligent route selection can be applied.

Natural England, DEFRA and Pow, 2021
GLOBIO, 2022

Hettler, 2022

Audubon, 2022

We suggest the use of water basins over ecoregions, as they align to
natural processes (loosely aligned to ecosystems and biodiversity and
are non-subjective), and due to the technical difficultly in defining the
borders of current ecosystems.

WWEF, 2022

Tickner et al., 2020
Dickens et al., 2021
NASA SWOT, 2022
Grill et al., 2019
Opperman et al, 2021
Kuehne et al., (in prep)

Deltares. (2021).
Feio et al., 2022
Forzieri et al., 2022
Climate Arc, 2022

There is arguably a comfort with the status quo, where some FIs may
be more at ease with higher levels of uncertainty around biodiversity
and ecosystem impact. Moreover, some data providers may be keen
to continue unchanged the provision of their products. Regardless, it
seems that a growing body of Fls agree that ‘biodiversity’ insight can
be improved and that it is a priority to do so considering the wider
implications.

Some Fls have worked to scale their internal geospatial ESG capacity,
which should be welcomed; however, while it will give them a
significant advance in understanding such data, it is impossible for any
single inhouse team to deliver a complete geospatial ESG ecosystem.
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